Thesis Proposal:
Implementing Parallelisations in a Fuzzy Qualitative Reaspn
Engine

Allan M. Bruce

e-mail: abruce@csd.abdn.ac.uk

March 25, 2005

CONTENTS

Contents

1 Thesis

2 Motivation

3 Related Research

3.1
3.2
3.3
3.4

Morven

Parallel QSIM . . .

4 Approach

4.1
4.2
4.3
4.4

Tuple-filter
Waltz-filter
State-generator .

Transition Analysis

5 Deliverables

6 Evaluation

7 Work Completed So Far

8 Workplan

14

14

14

18

LIST OF FIGURES 3

List of Figures

1 Fuzzy quantity space showing nine quantities. L 6
2 The Architecture of Parallel QSIM. e e 8
3 Flow Chartof IMorven. e 9
4 The JMorven Architecture. e e 10
5 The Tuple Filterinparallel. e e 12
6 The State Generatorinparallel. 13
7 Coupledtanks model. e e 15
8 Execution times of the Tuple-Filter. 16
9 Execution times of the Waltz-filter and State-generator.... 17
List of Tables
1 Arithmetic primitives used in FuSim e 5

1 THESIS 4

1 Thesis

Qualitative Reasoning is an area of Artificial Intelligengbich has been well researched [1-5]. Until recently
QR implementations were developed sequentially and thukl gmt take advantages of multiple computers or
processors. Platzner & Rinner [6-8] looked into increasivgefficiency of QSIM [2] - a popular QR system.
They achieved this by porting QSIM to C but also noticed tkagas of th&ualitative Analysiprocess benefited
from being parallelised since the way that data was gergcateld be partitioned. This means that one data unit
can be processed independently of all others hence can lieayarallel manner. Their results were encouraging
but there were a few drawbacks with the work. The parallétisaa were only introduced for the two stages, and
QSIM itself is limited dues to using only one derivative pariable. This document details the proposal that it is
possible to parallelise the whole process using data jeaitig and introducing novel algorithm parallelisations.
With the price of computer hardware falling and the develeptrof faster internet communications, web
services are becoming increasingly popular. A paralldli@R system will be able to benefit from this new

technology and thus could be used as a web service whichallmall QR to be more accessible.

2 Motivation

There are several domains in which QR has been used [9-18hkuthich has not been explored as frequently
is that of planning. Planning is thought to be an area thatavoe interesting to use as a domain for QR (such as
the model-based planner, Excalibur [11]) and this was tigral intention for the project. However, a suitable
implementation of a Qualitative Reasoner was not availaulé was decided to implement one based on Morven
(formerly known as Mycroft [4]). During background reseatit was discovered that Platzner & Rinner came
up with an excellent idea of exploiting parallelisationsl amvestigated using a dedicated parallel QSIM machine
to speed up execution. They found that the Tuple-filter stZfg@ualitative Analysis used data that allowed
partitioning so that each unit could be processed indepelydef the others. This allows each process to be run
in parallel thereby achieving a speedup. They also despaballelising the process of generating state data by
partitioning the search space into smaller sub-searcheair flesults were interesting but there were limitations
with their system. The implementation was described asaptathowever their design required a dedicated
hardware system consisting of several FPGAs and B&Pting as co-processors which were programmed to
speed up execution of heavy calculations. This means thatdar to run their system, this same machine
must be used which is not desirable. Platzner & Rinner didmastigate parallelising th&ransition Analysis
phase which is required for simulation. QSIM allows quél® behaviours to be constructed from models,
however QSIM itself has limitations in that it only reasonghaone derivative per variable and this derivative
can only be decreasing, steady or increasing. Also, QSIM gsep symbolic quantity spaces, using fuzzy
guantities allows behaviours to be simulated in which gtiastcan be represented with different precision and

uncertainty. Overcoming these limitations is the main mation for developing a novel architecture for a new

1Texas Instruments TMS320C40

3 RELATED RESEARCH 5

Operation Result Conditions
-n (—d ,7) alln

1 (éa % d+5) C(CZ,Y)) n > 0,n <0
m-+n a+cb+d7’+’yﬂ+5) allm,n

m-—n a— —c,T+96,0+7) allm,n

(
(
mxn (acbda’y—l—c7’—7"y,b6+dﬁ+ﬁ5) m >q 0,n >q 0
(ad,be,dT —ad + 76, —by+cB—Fv) m<o0,n>¢0
(be,ad, by — cB+ By, —dr +ad —75) m >00,n <o 0
bd,ac,—bd —df — B0, —ay —ct+71y) m<p0,n<g0

m= [a7b77—7/3]’n: [C7d7776]

Table 1: Arithmetic primitives used in FuSim

QR implementation.

Having a parallel QR package has several advantages. Tlat®etime should be reduced, therefore
allowing larger problems to be solved in less time which imtshould make QR more applicable to an increased
number of problems. Making an abstract architecture whiohld/be portable and scalable would also allow
web services or similar technologies to be used thus makifmy\en available for use in other systems, e.g.
diagnosis, planning and learning. Doing so would also maRen@re available and would potentially make it a
more popular tool.

Implementing parallelisations in a QR system is not a tritaak, especially when trying to make the system
portable and scalable. As mentioned earlier, Platzner &&insed data partitioning to implement parallelisations
however this is not possible with all stages in the QR prac&kg problem is then to develop novel algorithms
which allow the calculations to be parallelised while consey the integrity of shared data. Another problem
to overcome is the amount of memory required to run a paratiplementation, especially when running on a
single machine with multiple processors.

The main focus of the project has shifted to investigate hakaltelisations can benefit a qualitative reasoning

engine.

3 Related Research

The work undertaken so far is largely based on an existindi@tize Reasoning package which in turn takes
influences from a number of QR systems. These are detaildtkifiotlowing subsections along with a brief

discussion of some work already completed on paralletinatby other researchers.

3 RELATED RESEARCH 6

nmax nl nm ns zer ps pm pl pmax

Figure 1: Fuzzy quantity space showing nine quantities.

3.1 QSIM

One of the most popular qualitative reasoning systems idit@tise Simulation (QSIM) developed by Kuipers
[2]. QSIM is a constraint based QR system usfpgalitative Differential Equationso specify the constraints.
Variables in QSIM are represented by:gmag, qdit- pair wheregmagdenotes the qualitative magnitude of the
variable which consists of either a landmark value or armuadewithin the given range. The rate of change of the
variable is expressed loylir which can take one of the three values, for increasingdecfor decreasing ostdfor
steady. TheConstraint-filteris used to ensure the qualitative states created are camtsigith the constraints. A
pairwise Waltz-filter [14] is used to ensure the model is ¢strst across all constraints which discards any tuples
conflicting across any pair of constraints. To allow QSIM imdate a model’'s behaviour over time, transition

rules are used describing how variables transit dependiriger magnitude and direction.

3.2 FuSim

QSIM was the main inspiration for the development of a Fuzzal@@ative Simulation package called FuSim
[3]. Fuzzy reasoning deals with uncertainty whereas QRsd@&h imprecision therefore combining the two
approaches is thought to increase the scope of such a syStes8im represents fuzzy numbers as paramaterised

four tuples as detailed below:

0 r<a—ao
alzx—a+a) z€fa—a d

pa(r) = ¢ 1 r€fa bl
B7Lb+B—2) zeb b+4]
0 x>b+p

These fuzzy four tuples are used to crdatezy Quantity Spaceé quantity space in FuSim is a set of overlapping
four tuples which span a finite range as shown in figure 1.cAcut is used in FuSim to aid simulation - this
is where a fuzzy quantity space is converted to a non-oveifigpcrisp quantity space by selecting a 'typical’
membership valuey.

To use fuzzy four tuples the standard arithmetic operatave been defined as shown in table 1. Once these

arithmetic operators have been applied to fuzzy numbegggibulting propagated value needs to be mapped back

3 RELATED RESEARCH 7

to a relevant quantity space (the predicted values). Agygoximation Principlds used to do this, which merely
states that any quantities in the quantity space overlgppie propagated fuzzy value are an approximation to it.
Obviously some values may be more suited to this approximasio adistance metrigés used to determine how
close the approximation is for a given propagated value mappack into the quantity space. This technique also
allows the prioritisation of quantities which is utilisedrihg simulation.

FuSim uses a similar variable representation to QSIM. Hewthe derivative is not restricted to three values
as in QSIM, it can instead take on any value in the quantitgsgpecified (including a specific one just for that
derivative if desired). This allows the model to be analysexte precisely over time and also allows FuSim to
make temporal calculations. Due to the finite number of gtiagtin each quantity space, FuSim creates a state
to describe the model at a given time. A behaviour is desdrésea set of these states in a tree with each node
representing a valid state and each edge a valid transition.

FuSim, like QSIM, is a non-constructive QR system, i.e. tige@thm uses the transition rules to determine

the set of successor values and then filters these with thretragrts and the pair-wise filter.

3.3 Morven

Morven [4], formerly known as Mycroft, is a qualitative ressng framework built on ideas developed in FuSim
and adding several novel features. Morven uses a consgutproach to qualitative analysis which lends itself
better toward simulation and helps reduce spurious betiegeneration. Due to its being constructive, Morven
requires that constraints are causally ordered. This iseva€onstraining variable must not appear before it has
been constrained in the ordering.

One major limit of QSIM and FuSim was the use of only one déikegper variable. Morgan [15] introduced
the concept olector Envisionmentl6] which allows a non-fixed number of derivatives to be ysadluding
reasoning purely with the magnitude of a variable. Morveilt ba this and introduce&uzzy Vector Envisionment
[4] which reasons about a non-fixed number of fuzzy deriestivWith the inclusion of multiple derivatives, a
system has to incorporate a method to be able to constrase thwdra derivativesDifferential Planeq17] are
used to add these extra constraints. Differential plarsstave the advantage that the model complexity may be

reduced for higher derivatives if the extra detail is notieed.

3.4 Parallel QSIM

One disadvantage of Qualitative Reasoning is that curneplieimentations are not very efficient [6] and can take
a long time to analyse the behaviour of complex models. Rdgsitand Rinner decided to try and optimise the
popular package QSIM to make it more efficient and therefppeal to a wider audience. QSIM was originally
developed in LISP so their first optimisation achieved wasnyborting QSIM to C. They found that this typically
decreased execution time by approximately three to fouedifar models running on the C version over the LISP

version on the same hardware setup. These results wereragoauso they sought more optimisations.

3 RELATED RESEARCH 8

Front end Processing element
TMS320C40
L1 101
L1
Processing element | | Processing element Processing element
TMS320C40 TMS320C40 oo TMS320C40
/I_l 1 ITI
Iy | ARy
L] Coprocessor
Processing element XC4013
TMS320C40
i
Coprocessor
XC4013

Figure 2: The Architecture of Parallel QSIM.

The Constraint-filter iterates through all tuples from tlenstraints and only consistent and valid tuples
remain. Each constraint is considered in turn and for evesgible combination of values a variable may take,
the Tuple-filter checks for consistency with the single ¢@ist. If a combination is found to be inconsistent that
tuple is discarded, however if the tuple is found to be caesisthen the Tuple-filter does not discard it. The
Tuple-filter and the Waltz-filter together make up the Caaistrfilter.

The form-all-states stage takes all valid tuples from thestraint filter and generates all possible unique states
for the set of constraints.

Platzner and Rinner decided to use a dedicated hardwaremaaghich would execute the large number of
instructions more quickly than a standard processor. [Quttire design and implementation of the tuple filter,
they found that the tuples could be filtered independentlyaah other. This would mean that all tuples could be
constrained in their own parallel stage which would speedxgeution greatly. The Tuple-filter was redesigned
for the dedicated parallel hardware platform using up t@sdYSP co-processors as shown in figure 2 [6].

The form-all-states stage was also parallelised, but uaiddferent technique which partitions the search
space into smaller sub-searches.

The results were positive offering a good performance mmee As mentioned earlier, the basic C
implementation was approximately three to four times fagtan the original LISP version. While using the
dedicated hardware parallel system, a further speed iserefiup to five times was observed (when using
seven processors). These results were very good, althbegh are a few drawbacks with their design: The
implementation was suited only for a dedicated hardwareesysising these DSP chips, which limits the user

base considerably. Also, the implementation was only desteup to seven parallel units therefore a speedup

4 APPROACH 9

Parse Input
Files

Get mode of
Operation

ion or
Transitions in

Qualitative Enionment Transition
. — .
Analysis Analysis

T Simulation

Output Envisionment
Results

Figure 3: Flow Chart of JIMorven.

model cannot be obtained to show the benefits of parallelisain a large scale. As mentioned in section 2,
QSIM has the limitations of only reasoning about one deinieadnd uses crisp quantities. A new parallel QR

engine was designed and implemented to overcome thesatiionis.

4 Approach

JMorven is a Java implementation of a Qualitative Reasoaitgine called Morven and completely re-written
with a novel parallel architecture. The new architecturalistract and scalable allowing JMorven to make use
of multi-threaded machines, multi-processor systems oumoin distributed computing environments. Being
written in Java, JMorven is also very portable which incesathe potential number of users. The design allows
the number of parallel units to be specified at run-time mgkiptimal use of the resources available. During the
design of JMorven, all stages of Qualitative Analysis hagerbidentified as parallelisable. These are detailed
below. Figure 3 shows a flow diagram of how JMorven is execatetifigure 4 shows a detailed diagram of the
parallel architecture of JMorven.

JMorven differs from its predecessor in that it uses a narstractive algorithm, thus it uses a similar process
to QSIM and FuSim during Qualitative Analysis.

As with Morven, JMorven uses Qualitative Differential E¢joas across Differential Planes to specify models.

For example, the following differential equation
V/ =4dqi — 4o

is specified as follows for use with JMorven:

4 APPROACH 10

[mm—m——————— A Constraints |,
Core System:

Results viewer /
save results to file

I ; o s et e i -
| Parses model, distributes and | 7 1 1
synchronises connected 1 .- -5
1 systems r." 1"a| Tuple 1
| S v 1 Filter | !
| ZZ’::t?""’g;'a::: ! Child process 1 1
| : / thread 1 1
1 i - Il waitz Fitter |1
1 Get mode of Child process | and State I
1 operation from user | | thread ", 1 Generation 1,
or command line 1 A S
| " P | IS
1 | 1 &
1 Synchroniser: Spawns 1 | Transition "!_, State
1 and synchronises . %1 |_Analysis 1 | Repository
local/remote processes - .
1 Child process 4 1
1 | thread s
1
1

Figure 4: The JMorven Architecture.

Constraint: sub (dt 1 V) (dt 0 gi) (dt 0 q0)

The first keyword after ‘Constraint.’ specifies the type ohswaint. The subtraction constraint requires three
variables to be specified - the result, the variable to saobfram and the variable to subtract. Variables are
specified by (dt DERIV VARNAME) where DERIV specifies the ord# the derivative for the variable (zero
denotes the magnitude of the variable) and VARNAME speaffigish variable is in the constraint. All constraints
are specified per differential plane allowing the detail afher order derivatives to be reduced for speed of
execution. Since JMorven us€sialitative Vectorgwhich allows a variable number for the maximum order of
derivative for a variable), the number of the derivativethimconstraint are not restricted, however every derigativ
must be constrained from zero to the maximum order specified.

JMorven also uses Fuzzy Quantity Spaces to specify the fgaantities within the system. An example

guantity space would be specified in JMorven as follows:

n-max -1 -1 0 0.1
n-large -0.9 -0.75 0.05 0.15
n-medium -0.6 -0.4 0.1 0.1
n-small -0.25 -0.15 0.1 0.15
zero 0 0 0 0
p-small 0.15 0.25 0.15 0.1
p-medium 0.4 0.6 0.1 0.1
p-large 0.75 0.9 0.15 0.05
p-max 1 1 0.1 0

Quantities are specified by the following: QNAMB « 3, whereq, b, o & 3 form the fuzzy four-tuple as detailed

in section 3.2. JMorven also uses the Approximation Priedipmap propagated values from the constraints back

4 APPROACH 11

into the relevant quantity space.
Details of how each stage of Qualitative Analysis has beealletised so far are discussed in the following

sub-sections along with a note about Transition Analysis.

4.1 Tuple-filter

The Tuple-filter was parallelised in a similar manner to tfdlatzner and Rinner where each tuple can be filtered
independently of the others. JMorven iterates through eanhtraint in turn obtaining a set of valid tuples from

each. For example, for a single tank with an inflow and outftmve of the constraints is:
V/ =4qi — 4o

which states that the rate of change of the volume of wateqisleto the difference between the inflow and
outflow. This constraint only reasons about the first deikieadf IV and the zeroth derivatives gf andgq,. A

valid tuple from this constraint may include:
[V' gi go] = [p-small p-large p-mediun

A number of valid tuples will be produced for each constrairthe model. Since each constraint can be filtered
independently, they can be executed in their own parallie] dhlorven creates a new thread for each constraint.
If there are more constraints than the maximum number ofahlaithreads, JMorven queues constraints until a

thread becomes available. A diagram of how the Tuple-fitgrarallelised is shown in figure 5.

4.2 Waltz-filter

After the Tuple-filter there are a large set of constraipies, and each constraint-tuple is a vector of valid fuzzy
guantities similar to the one shown above. To ensure thaiibles are consistent over all constraints, a Waltz-
filter is used. which involves pairing all possible constitgairs that are adjacent (two constraints are said to be
adjacent if they each share a common derivative of a vajialdach pairing then iterates through all possible
tuples and discards those that are not common to both. Farggaif we have constraints C1 and C2 from the

single tank example with tuples as shown:

CL: [V’ q; qo] =[p-small p-large p-mediupn
C2:[V q.] = [p-medium p-medium

where C2 is the one to one mapping representing a monotaerieasing function betweed andg,. The only
common variable to both of these constraintgjsvhich is consistent for the given valugs-ihediumin both
constraints) therefore the filter would keep this pair, hesvef C2 = [p-large p-largg then the pair would be
discarded ag, would be inconsistent across the pair of constraints.

Each pair of constraints can be executed independentlyotf @her, therefore can be parallelised. One way

to implement the Waltz-filter in parallel is to first create @thaustive list of all possible pairs of constraints for

4 APPROACH 12

Figure 5: The Tuple Filter in parallel.

C, denotes each constraint in the system which is filtered iovits thread

the model, and then create a new thread for each pair (queairgif the maximum number of threads has been
reached until one becomes free as before). JIMorven incatgsthe Waltz-filter in the State-generation stage as

explained in the next section.

4.3 State-generator

The State-generator is the most computationally experssage of Qualitative Analysis. This is the process of
iterating through each set of tuples and creating uniquesstar every combination of variables’ derivatives

possible. JIMorven combines the Waltz-filter described alvathin this stage to optimise performance. To create
these unique states, JMorven uses a recursive techniqueitoegeate the constraints. All of the tuples within a

constraint are considered in turn. If the Waltz-filter disisathe tuple, the next tuple is considered. If there are
no more tuples left in the current constraint the iteratitops and the end of this recursion is met allowing the
previous constraint’s iteration to continue. If and whem Yaltz-filter finds a consistent tuple, the next constraint
is considered from its first tuple (unless the current camstiis the last one). If this is the last constraint and a
tuple is consistent then a unique state is created. Thiedtoe carries on until there are no more tuples left in

the first constraint. The following pseudo-code shows tloegss described above:

4 APPROACH 13

Figure 6: The State Generator in parallel.

T, shows each thread which executes the Recursive funftjon

constraint c=0
function: recurse(int c)

{

iterate t tuples in constraint c

{

if tuple t is consistent
{
if cis last constraint
create uni que state
el se

recurse(c+l) //next constraint

To parallelise this stage, the first recursive step is brak®wn into an iterative step, and each iteration is spawned
in its own thread (note that all tuples in the first constrairg valid since no other constraints have been set,

therefore there is no need to check the validity of thesee)plIThe iteration is shown below:

iterate i through tuples in c=0
{
c =1

recurse(c)

This allows the state-generation to run in parallel as shioviigure 6. The first constraint is chosen to be the one
which has the number of tuples closest to the number of dlaithreads. It can be seen that a filter is included in

the State-generation which negates the need for a sepaadtiefilter, leading to a decrease in execution time.

5 DELIVERABLES 14

4.4 Transition Analysis

The Transition Analysis (TA) phase involves determiningvitalitative states transit between one another. This
is done by followingTransition Rulesvhich assume that all transitions are continuous [18]. Aipieary version
of the TA phase has been implemented in JMorven in parallgkkier the benefits of the parallelisations are not

yet apparent. Optimising these parallelisations will fgvamt of future work still to be completed.

5 Deliverables

By the end of the project it is proposed that a fuzzy qualieateasoning engine, called JMorven, will be fully
developed using parallel optimsations in as many stagesssihjpe. Parallelisations will be in the form of data
partitioning where possible and novel algorithms will bedisvhen this is not possible or when new algorithms
will provide a greater benefit from parallelisations. JMsmwvill be implemented to take advantage of web
services and GRID technology (such as the Globus Toolki)[18eb services provide a convenient and popular
interface to applications and servers and distributed edimg environments allow the sharing of resources to be
accessed easily. These benefits should make JMorven mdreasgto a wider array of problems and should

become a more popular tool for analysing systems that cardoelted qualitatively.

6 Evaluation

To test IMorven and its performance benefits, a set of moditlsatested and the results will be analysed against
existing behaviours from its predecessor, Morven. Teslivigrven on multiprocessor machines and distributed
computing environments will show the benefits of a paralteha@ecture and should show that this is a viable
means of decreasing execution times for QR systems in thesfuf\s a web service, JIMorven will allow a means

of testing QR on some example domains, e.g. planning orilegrn

7 Work Completed So Far

So far, the main architecture for JIMorven has been impleadksnid all stages have been successfully parallelised,
however some of the benefits are not yet apparent in the Ti@nginalysis phase. The output from JMorven is
consistent with its predecessor so assumed to be correetbdimnefits from parallelisations offer a good speed
increase - approximately halving execution time when ufog processors over one.

So far, IMorven only runs on single machines with one or mooegssors. JMorven was executed on a ten
processor SUN server running Solaris 5.8 with Sun Java 03&.2Two test models were used. For testing the
Tuple-filter a coupled tanks model (see fig. 7) with two inpansl two outputs was used as shown below (only

the first differential plane):

7 WORK COMPLETED SO FAR 15

lqo1 lq°2

Figure 7: Coupled tanks model.
Two tanks of water with heights,, h, and there differenck;,. Two inflow taps
¢i1, ¢i1 and two outflow plugs;1, ¢;1 determine the flow in and out of the tanks and

the cross-flow;, describes the flow between them.

Constraint: sub (dt 0 h12) (dt 0 hl) (dt O h2)
Constraint: func (dt 0 gx) (dt 0 h12)

Constraint: func (dt 0 go2) (dt 0 h2)

Constraint: func (dt 0 qol) (dt 0 h1)

Constraint: sub (dt 0 g1flow) (dt 0 gil) (dt O gx)
Constraint: add (dt 0 g2flow) (dt 0 gi2) (dt O gx)
Constraint: sub (dt 1 h1) (dt 0 g1flow) (dt 0 gol)
Constraint: sub (dt 1 h2) (dt 0 g2flow) (dt 0 go2)

Thesubandaddconstraints are organised by having the result in the firsabke specified. Th&uncconstraint is
a qualitative function where values can be mapped from tih&adeiable to the right variable which allows many
types of function to be implemented. For such models, themelyn define the monotonic increasing function
(M™).

For testing the State-generator a coupled tanks model wasiakd, but with only one input (to tank A) and

one output (from tank B) as described by the following caaists:

7 WORK COMPLETED SO FAR 16

Constraint: func (dt 0 go) (dt 0 h2)
Constraint: func (dt 0 gx) (dt 0 h12)
Constraint: sub (dt 0 h12) (dt 0 hl) (dt O h2)
Constraint: sub (dt 1 h1) (dt O gi) (dt 0 gx)
Constraint: sub (dt 1 h2) (dt 0 gx) (dt 0 gqo)

The quantity spaces used for both consisted of nine fuzeyiats. Each model was run ten times for each number
of threads, and results show the speedup. The results otiffle-Tilter are shown in figure 8. Itis clear to see that
there is a benefit from the parallelisations. There was guigege error in times recorded for the Tuple-filter - this
is due to the very small execution time. The Tuple-filter takell under one second to complete for this model.
Using six threads over one almost decreases the executiendly a factor of two, which is less than expected.
This is probably due to the very small amount of time takeritierTuple-filter. When the time taken is this small,
the overhead of creating and killing threads becomes appakemnuch more complex model should show larger

benefits from the parallelisations, and will form part ofufeg work.

Tuple Filter Speedup
T T T

161 —

15 b

Speedup factor, S(n)

121 —

1 I I I I I I I I I
1 15 2 25 3 35 4 4.5 5 55 6
Number of Processors, n

Figure 8: Execution times of the Tuple-Filter.
Shows speedup factor of Tuple-filter for multiple numberpmfcessors using a

coupled tanks qualitative model with two inputs and two otsp

The State-generator results are shown in figure 9. The berfi¢fie parallelisations is apparent for a smaller
number of threads - using four threads over one almost héteasinning time of the State-generator. This benefit
is less obvious when using a larger number of threads. Thi®igyht to be due to the model used since the State-
Generator splits the first constraint into threads. The fioststraint chosen may have only a few valid tuples
when recursed to the next constraint. For example, if thexéem valid tuples in the first constraint (CO) then ten

threads will be spawned and each thread starts the recunstonstraint C1. One of these threads might not have

7 WORK COMPLETED SO FAR 17

25

State Generator and Waltz Filter Speedup
T T

Speedup factor, S(n)

1 I I I I I I
1 2 3 4 5 6 7 8
Number of Processors. n

Figure 9: Execution times of the Waltz-filter and State-getae.
Shows speedup factor of State Generator and combined WhadtzZor multiple
processors of threads for a coupled tanks qualitative maitielone input and one

output.

any consistent tuples in C1 therefore would terminate afteery short time. However one of the other threads
may have several valid tuples in the constraint C1 and waeddire recursion to the next constraint for each of
them therefore this thread may take substantially longexézute. This behaviour would not be as apparent when
using models with a greater number of constraints. Anotlssibility for the benefits to be less apparent than
expected might be due to the amount of semaphoring requineabtect the data from corruption when accessing
it from more than one thread simultaneously. For a distedubmputing environment, semaphoring would not be
required as all data would be copied for each process, whighld allow more benefit from the parallelisations.

The parallelisations still have to be optimised - it is hopteat close to linear speedup [2Dyvill be observed
when the project is completed. Although JMorven is fundiipthere are some advanced features which are
in mid-development. These include the useAoikiliary Variablesand a distance metric. The use of auxiliary
variables allows a variable to be used during constrairtriilty but is not mapped backed to any quantity space,
which helps reduce spurious state generation. A distantecndetermines how close a calculated variable is to
the quantity from the quantity space when mapped back usegpproximation principle. This allows behaviours
to be prioritised and can suggest more likely behaviourswgimulating.

JMorven has not been implemented as a web service yet. lbmoped to implement JMorven as a web
service, or use existing GRID technology.

2Linear speedup is where the execution time is decreasietes when run om processors

8 WORKPLAN 18

8 Workplan

The last thirteen months of the project will be used to finlplementing the features discussed in section 7 and

to writing up the final thesis. The following workplan showaahthis time is intended to be broken down.
e Incorporate auxiliary variables in a parallel manner (1 thpn
e Incorporate distance metric in a parallel manner (0.5 nme)nth
e Parallelise Transition Analysis (1 month)
e Test more complex models and record execution times (0.5mpn
e Optimise parallelisations (1 month)
¢ Incorporate more advanced simulation engine (1.5 months)
e Create JMorven web-service (0.5 months)
e Test web-service with planning and learning (1 month)

e Writing up time (6 months)

REFERENCES 19

References

[1] K. Forbus. Qualitative process theowutificial Intelligence 24:85-168, December 1984.
[2] B. Kuipers. Qualitative simulationArtificial Intelligence 29(3):289-338, September 1986.

[3] Q. Shen and R. Leitch. Fuzzy qualitative simulatidlBEE Transactions on Systems, Man and Cybernetics
23(4):1038-1061, July-August 1993.

[4] G. M. Coghill. Mycroft: A Framework for Constraint-based Fuzzy QualitatiReasoning PhD thesis,
Heriot-Watt University, September 1996.

[5] D. S. Weld and J. de KleeReadings in Qualitative Reasoning about Physical Systeolisme 1. Morgan

Kaufmann Publishers, Inc., 1990.

[6] M. Platzner and B. Rinner. Parallel qualitative simidat Simulation Practice and Theory - International
Journal of the Federation of European Simulation Societ§8-8):623-638, 1997.

[7] M. Platzner and B. Rinner. Toward embedded qualitatireuation. IEEE Intelligent System45(2):62—-68,
March-April 2000.

[8] M. Platzner and B. Rinner. Design and implementation qfaaallel constraint satisfaction algorithm.

International Journal in Computers and Their Applicatiof$2):106—116, June 1998.
[9] J. de Kleer and B. Williams. Diagnosing multiple faultsrtificial Intelligence 32(1):91-130, April 1987.

[10] G. M. Coghill, S. M. Garrett, and R. D. King. Learning ditative metabolic models. In R Lopez
de Mantaras and L. Saitta, editoRrpceedings of the 16th European Conference on Artificigdlligence
pages 445-449.

[11] B. Drabble. Excalibur: A program for planning and re@isg with processes.Artificial Intelligence
62(1):1-40, July 1993.

[12] U. E. Keller.Qualitative Model Reference Adaptive ContBhD thesis, Heriott-Watt University, September
1999.

[13] K. de Koning, B. Bredeweg, J. Breuker, and B. Wielingaoddl-based reasoning about learner behaviour.
Artificial Intelligence 117:173-229, March 2000.

[14] D. Waltz. Understanding Line Drawings of Scenes with ShaddvWsGraw-Hill, New York, 1975.

[15] A. Morgan. Qualitative Behaviour of Dynamic Physical Systen®hD thesis, University of Cambridge,
1988.

[16] G. M. Coghill. Vector envisionment of compartmentakgms. Master’s thesis, University of Glasgow,
April 1992.

REFERENCES 20

[17] M. Wiegand.Constructive Qualitative Simulation of Continuous Dyna®ystemsPhD thesis, Heriot-Waitt
university, May 1991.

[18] F. Cellier. Continuous System Modelling991.

[19] Globus. http://www.globus.org/, 2005.

[20] R. Greenlaw, H. J. Hoover, and W. L. Ruzzhimits to Parallel Computation Oxford University Press,
Oxford, UK, 1995.

