
Parallel Fuzzy Qualitative Reasoning

Allan M. Bruce and George M. Coghill
Department of Computing Science

University of Aberdeen
Aberdeen AB24 3UE

e-mail:{abruce, gcoghill}@csd.abdn.ac.uk

Abstract

Qualitative Reasoning offers an approach to anal-
yse system behaviours where standard numerical
techniques are impossible or impractical. The the-
ory behind Qualitative Reasoning is very simple,
however current implementations are not very effi-
cient. We have developed a Qualitative Reasoning
engine with a novel parallel abstract architecture.
Recognising several stages within the engine to be
executed in parallel allows the engine to be run on
multiprocessor machines or in distributed comput-
ing environments and is scalable. This should allow
the engine to be executed much faster and make
qualitative reasoning an option for future applica-
tions. Results of the parallelisations show that exe-
cution time has been decreased by an order of two
in these stages when run on a small multi-processor
machine.
Keywords: Qualitative Reasoning, Parallel Sys-
tems, Fuzzy Systems.

1 Introduction
The development of the GRID [1] and the ongoing evolution
of web services has meant that distributed computing now
has the potential to be carried out on a global scale. This
has presented a great opportunity for the construction of AI
tools utilising these resources, which is being actively pur-
sued. Web services offer a portable cross-platform interface
which allows tools to be easily accessed remotely.

In this paper we present a novel software architecture for
Fuzzy Qualitative Reasoning, instantiated as a system named
JMorven. JMorven is designed to capitalise on these devel-
opments; both by making direct use of the GRID for parallel
processing and providing a web resource for use in larger sys-
tems such as model learning, diagnosis or planning.

The system described in this paper was inspired by the
work of Platzner and Rinner [2–4] on parallelising QSIM [5].
While developing a C version of QSIM in order to achieve a
more optimal version, they noted that certain parts of QSIM
would benefit from parallelisation, therefore they developed
a dedicated hardware architecture which resulted in what is
effectively a QSIM machine. While dedicated hardware is
unlikely to provide a realistic way forward, the design ideas

are sound and JMorven builds on these both by abstracting
the engine and extending the degree of parallelisation.

This paper is organised as follows: Section 2 introduces
qualitative reasoning and Morven [6]. Work undertaken by
Platzner and Rinner to optimise QSIM is detailed in section
3. Section 4 outlines the inspiration for implementing the
qualitative reasoner and how parallelisations were achieved.
Results of the parallelisations are shown and discussed in sec-
tion 5. Section 6 draws some conclusions from the work com-
pleted, and finally some future work is proposed in section 7.

2 Fuzzy Qualitative Reasoning
Mathematical analysis has been used for centuries to describe
the behaviour of systems. This makes use of precise quan-
tities which need to be well specified, however these precise
quantities are not always known. Qualitative Reasoning [5–9]
(QR) offers an approach to analysing systems with incom-
plete or imprecise knowledge. As such, QR can be used when
quantitative mathematical techniques cannot. There are sev-
eral domains in which QR has been used including diagnosis,
learning, planning and control [10–14].

The simplest representation in QR is when quantities fall
into one of three ranges: positive, zero, and negative. To in-
clude extra information about the behaviour of variables over
time, derivative information can also be included. For exam-
ple, if a single tank full of water has the plug removed, then
initially the volume of water would be qualitatively [+, -],
i.e. there would be a positive volume of water but the rate of
change of volume is negative. Eventually this system would
equilibriate to [0, 0] i.e. there would be no water in the tank
and there would be no change in the volume.

2.1 QSIM
One of the most popular qualitative reasoning systems is
Qualitative Simulation (QSIM) developed by Kuipers [5].
QSIM is a constraint based QR package usingQualitative
Differential Equationsto specify the constraints. Variables in
QSIM are represented by a<qmag, qdir> pair whereqmag
denotes the qualitative magnitude of the variable which con-
sists of either a landmark value or an interval within the given
range. The rate of change of the variable is expressed byqdir
which can take one of the three values,inc for increasing,dec
for decreasing orstd for steady. TheConstraint-filteris used
to ensure the qualitative states created are consistent with the



constraints and a pairwise Waltz-filter [15] is used to ensure
the model is consistent across all constraints which discards
any tuples conflicting across any pair of constraints. To allow
QSIM to simulate a model’s behaviour over time, transition
rules are used describing how variables transit depending on
their magnitude and direction.

2.2 FuSim
QSIM was the main inspiration for the development of
a Fuzzy Qualitative Simulation package called FuSim [8].
Fuzzy reasoning deals with uncertainty whereas QR deals
with imprecision therefore combining the two approaches is
thought to increase the scope of such a system. FuSim repre-
sents fuzzy numbers as paramaterised four-tuples as detailed
below:

µA(x) =



















0 x < a − α
α−1(x − a + α) x ∈ [a − α a]
1 x ∈ [a b]
β−1(b + β − x) x ∈ [b b + β]
0 x > b + β

These fuzzy four tuples are used to createFuzzy Quantity
Spaces. A quantity space in FuSim is a set of overlapping
four-tuples which span a finite range as shown in figure 1.
An α-cut is used in FuSim to aid simulation - this is where a
fuzzy quantity space is converted to a non-overlapping crisp
quantity space by selecting a ’typical’ membership value,α.

Figure 1: Fuzzy quantity space showing nine
quantities.

To use fuzzy four-tuples the standard arithmetic operators
have been defined as shown in table 1. Once these arithmetic
operators have been applied to fuzzy numbers, the resulting
propagated value needs to be mapped back to a relevant quan-
tity space (the predicted values). TheApproximation Princi-
ple is used to do this, which merely states that any quanti-
ties in the quantity space overlapping the propagated fuzzy
value are an approximation to it. Obviously some values may
be more suited to this approximation, so adistance metricis
used to determine how close the approximation is for a given
propagated value mapped back into the quantity space. This
technique also allows the prioritisation of quantities which is
utilised during simulation.

FuSim uses a similar variable representation to QSIM.
However the derivative is not restricted to three values as in
QSIM, it can instead take on any value in the quantity space
specified (or a specific quantity space purely for that deriva-
tive if desired). This allows the model to be analysed more
precisely over time and also allows FuSim to make temporal
calculations. Due to the finite number of quantities in each
quantity space, FuSim creates a state to describe the model at

Operation Result Conditions
−n (−d,−c, δ, γ) all n
1
n

(

1
d

, 1
c
, δ

d(d+δ)
,

γ

c(c−γ)

)

n >0 0, n <0 0

m + n (a + c, b + d, τ + γ, β + δ) all m, n
m − n (a − d, b − c, τ + δ, β + γ) all m, n
m × n (ac, bd, aγ + cτ − τγ, bδ + dβ + βδ) m >0 0, n >0 0

(ad, bc, dτ − aδ + τδ,−bγ + cβ − βγ) m <0 0, n >0 0
(bc, ad, bγ − cβ + βγ,−dτ + aδ − τδ) m >0 0, n <0 0
bd, ac,−bδ − dβ − βδ,−aγ − cτ + τγ) m <0 0, n <0 0
m = [a, b, τ, β], n = [c, d, γ, δ]

Table 1: Arithmetic primitives used in FuSim

a given time. A behaviour is described as a set of these states
in a tree with each node representing a valid state and each
edge a valid transition.

FuSim, like QSIM, is a non-constructive QR system, i.e.
the algorithm uses the transition rules to determine the setof
successor values and then filters these with the constraintsand
the pair-wise filter.

2.3 Morven
Morven [6], formerly known as Mycroft, is a qualitative rea-
soning framework built on ideas developed in FuSim and
adding several novel features. Morven uses a constructive
approach to qualitative analysis which lends itself betterto-
ward simulation and helps reduce spurious behaviour gener-
ation. Due to its being constructive, Morven requires that
constraints are causally ordered. This is where a constraining
variable must not appear before it has been constrained in the
ordering.

One major limit of QSIM and FuSim was the use of only
one derivative per variable. Morgan introduced the concept
of Qualitative Vectors[16] which inspiredVector Envision-
ment[17] which allows a non-fixed number of derivatives to
be used, including reasoning purely with the magnitude of a
variable. Morven built on this and introducedFuzzy Vector
Envisionment[6] which reasons about a non-fixed number of
fuzzy derivatives. With the inclusion of multiple derivatives,
a system has to incorporate a method to be able to constrain
these extra derivatives.Differential Planes[18] are used to
add these extra constraints. Differential planes also have
the advantage that the model complexity may be reduced for
higher derivatives if the extra detail is not required. An exam-
ple of differential planes is shown below for the single tank
system:

plane 0: C0: qo = M+(V )
C1: V ′ = qi - qo

plane 1: C0: q′

o = M+(V ′)
C1: V ′′ = q′

i - q′

o

WhereV is the volume of water in the tank andqi, qo repre-
sent the inflow and outflow of water respectively.

3 Parallel QSIM
One disadvantage of Qualitative Reasoning is that current im-
plementations are not very efficient [2] and can take a long
time to analyse the behaviour of complex models. Platzner
and Rinner decided to try and optimise the popular pack-
age QSIM to make it more efficient and therefore appeal to
a wider audience. QSIM was originally developed in LISP



so their first optimisation achieved was when porting QSIM
to C. They found that this typically decreased execution time
by approximately three to four times for models running on
the C version over the LISP version on the same hardware
setup. These results were encouraging so they sought more
optimisations.

The Constraint-filter iterates through all tuples from the
constraints and only consistent and valid tuples remain. Each
constraint is considered in turn and for every possible combi-
nation of values a variable may take, the Tuple-filter checks
for consistency with the single constraint. If a combination is
found to be inconsistent that tuple is discarded, however ifthe
tuple is found to be consistent then the Tuple-filter does not
discard it. The Tuple-filter and a Waltz-filter together make
up the Constraint-filter.

The form-all-states stage takes all valid tuples from the
constraint filter and generates all possible unique states for
the total set of constraints.

Platzner and Rinner decided to use a dedicated hardware
machine which would execute the large number of instruc-
tions more quickly than a standard processor. During the de-
sign and implementation of the tuple filter, they found that
the tuples could be filtered independently of each other. This
would mean that all tuples could be constrained in their own
parallel stage which would speed up execution greatly. The
Tuple-filter was redesigned for the dedicated parallel hard-
ware platform using up to seven DSP co-processors as shown
in figure 2 [3].

Figure 2: The Architecture of Parallel QSIM.

The form-all-states stage was also parallelised, but using
a different technique which partitions the search space into
smaller sub-searches; for more information the reader is di-
rected to [2–4].

The results were positive offering a good performance in-
crease. As mentioned earlier, the basic C implementation
was approximately three to four times faster than the origi-
nal LISP version. While using the dedicated hardware par-
allel system, a further speed increase of up to five times was
observed (when using seven processors). These results were
very good, although there are a few drawbacks with their de-
sign: The implementation was suited only for a dedicated
hardware system using these DSP chips, which limits the user
base considerably. Also, the implementation was only tested
on up to seven parallel units therefore a speedup model cannot

be obtained to show the benefits of parallelisation on a large
scale. As mentioned earlier, QSIM has the limitations of only
reasoning about one derivative and uses crisp quantities. A
new parallel QR engine was designed and implemented to
overcome these limitations.

4 JMorven
JMorven is a Java implementation of a Qualitative Reasoning
engine based on Morven and re-written with a novel abstract
parallel architecture (see fig. 3). As with Morven, JMor-

Figure 3: The JMorven Parallel Architecture.

ven uses Qualitative Differential Equations across Differen-
tial Planes to specify models. For example, the following dif-
ferential equation

V ′ = qi − qo

is specified as follows for use with JMorven as follows:

Constraint: sub (dt 1 V) (dt 0 qi) (dt 0 q0)

The first keyword after ‘Constraint:’ specifies the type of con-
straint. The subtraction constraint requires three variables to
be specified - the result, the variable to subtract from and the
variable to subtract. Variables are specified by (dt DERIV
VARNAME) where DERIV specifies the order of the deriva-
tive for the variable (zero denotes the magnitude of the vari-
able) and VARNAME specifies which variable is in the con-
straint. All constraints are specified per differential plane al-
lowing the detail of higher order derivatives to be reduced for
speed of execution. Since JMorven uses Fuzzy Vector Envi-
sionment (which allows a variable number for the maximum
order of derivative for a variable), the number of derivatives
in the constraint are not restricted, however every derivative
must be constrained by the constraints.

JMorven also usesFuzzy Quantity Spacesto specify the
fuzzy quantities within the system. The example quantity
space shown in figure 1 would be specified in JMorven as
follows:

n-max -1 -1 0 0.1
n-large -0.9 -0.75 0.05 0.15
n-medium -0.6 -0.4 0.1 0.1
n-small -0.25 -0.15 0.1 0.15
zero 0 0 0 0
p-small 0.15 0.25 0.15 0.1
p-medium 0.4 0.6 0.1 0.1
p-large 0.75 0.9 0.15 0.05
p-max 1 1 0.1 0



Quantities are specified by the following: QNAMEa b α β
(wherea b α β form the paramaterised four-tuple as described
in section 2). JMorven also uses theApproximation Principle
discussed in section 2 to map calculated quantities from con-
straints back into the relevant quantity space.

4.1 Parallelisation
Taking our motivation from Platzner and Rinner’s work in
parallelisation, JMorven utilises several parallel stages to in-
crease efficiency. The JMorven architecture was written from
scratch and therefore allowed a novel parallel design to be
easily implemented. The new architecture is abstract and
therefore scalable allowing JMorven to make use of multi-
threaded machines, multiprocessor systems or to run in dis-
tributed computing environments. Being written in Java,
JMorven is also very portable which increases the potential
number of users. The design allows the number of parallel
units to be specified at run-time making optimal use of the
resources available. During the design of JMorven, all three
stages ofQualitative Analysishave been identified as paral-
lelisable. These are detailed below. Figure 4 shows a flow
diagram of how JMorven is executed for different modes of
operation.

Figure 4: Flow Chart of JMorven.

4.2 Tuple-filter
The Tuple-filter was parallelised in a similar manner to thatof
Platzner and Rinner where each tuple can be filtered indepen-
dently of the others. JMorven iterates through each constraint
in turn obtaining a set of valid tuples from each. For example,
from our single tank example above, one of the constraints is:

V ′ = qi − qo

which states that the rate of change of the volume of water is
equal to the difference between the inflow and outflow. This
constraint only reasons about the first derivative ofV and the
zeroth derivatives ofqi andqo. A valid tuple from this con-
straint may include:

[V ′ qi qo] = [p-small p-large p-medium]
A number of valid tuples will be produced for each constraint
in the model. Since each constraint can be filtered indepen-
dently, they can be executed in their own parallel unit. JMor-
ven creates a new thread for each constraint. If there are more
constraints than the maximum number of available threads,
JMorven queues constraints until a thread becomes available.
A diagram of how theTuple Filter is parallelised is shown in
figure 5.

Figure 5: The Tuple Filter in parallel.Cx denotes
each constraint in the system which is filtered in
its own thread.

4.3 Pairwise-filter
After theTuple filterthere are a large set of constraint-tuples,
and each constraint-tuple is a vector of valid fuzzy quanti-
ties similar to the one shown above. To ensure that the tuples
are consistent over all constraints, a pairwise-filter is used.
which involves pairing all possible constraint-pairs thatare
adjacent (two constraints are said to be adjacent if they each
share a common derivative of a variable). Each pairing then
iterates through all possible tuples and discards those that are
not common to both. For example, if we have constraints C1
and C2 from the single tank example with tuples as shown:

C1: [V ′ qi qo] = [p-small p-large p-medium]
C2: [V qo] = [p-medium p-medium]

where C2 is the one to one mapping representing a monotonic
increasing function betweenV and qo. The only common
variable to both of these constraints isqo which is consistent
for the given values (p-mediumin both constraints) therefore
the filter would keep this pair, however if C2 = [p-large p-
large] then the pair would be discarded asqo would be incon-
sistent across the pair of constraints.

Each pair of constraints can be executed independently of
each other, therefore can be parallelised. One way to imple-
ment the pairwise-filter is to first create an exhaustive listof
all possible pairs of constraints for the model, and then cre-
ate a new thread for each pair (queuing pairs if the maximum
number of threads has been reached until one becomes free
as before). JMorven incorporates the Waltz-filter in the State-
generation stage as explained in the next section.

4.4 State-generator
The State-generator is the most computationally expensive
stage ofQualitative Analysis. This is the process of iterat-
ing through each set of tuples and creating unique states for



every combination of variables’ derivatives possible. JMor-
ven combines the pairwise-filter described above within this
stage to optimise performance. To create these unique states,
JMorven uses a recursive technique to enumerate the con-
straints. All of the tuples within a constraint are considered
in turn. If the pairwise-filter discards the tuple, the next tuple
is considered. If there are no more tuples left in the current
constraint the iteration stops and the end of this recursionis
met allowing the previous constraint’s iteration to continue. If
and when the pairwise-filter finds a consistent tuple, the next
constraint is considered from its first tuple (unless the current
constraint is the last one). If this is the last constraint and a
tuple is consistent then a unique state is created. This proce-
dure carries on until there are no more tuples left in the first
constraint. The following pseudo-code shows the process de-
scribed above:

constraint c=0
function: recurse(int c)
{

iterate t tuples in constraint c
{

if tuple t is consistent
{

if c is last constraint
create unique state

else
recurse(c+1) //next constraint

To parallelise this stage, the first recursive step is broken
down into an iterative step, and each iteration is spawned in
its own thread (note that all tuples in the first constraint are
valid since no other constraints have been set, therefore there
is no need to check the validity of these tuples). The iteration
is shown below:

iterate i through tuples in c=0
{

c = 1
recurse(c)

}

This allows the state-generation to run in parallel as shownin
figure 6. The first constraint is chosen to be the one which
has the number of tuples closest to the number of available
threads. It can be seen that a filter is included in the State-
generation which negates the need for a separate Waltz-filter,
leading to a decrease in execution time.

Figure 6: The State Generator in parallel.Tx

shows each thread which executes the Recursive
functionRx.

4.5 Transition Analysis
The Transition Analysis (TA) phase involves determining
how qualitative states transit between one another. This is

achieved by followingTransition Ruleswhich assume that
all transitions are continuous. The TA phase has been im-
plemented in JMorven however no parallelisations have been
attempted yet. This will form part of future work still to be
completed.

5 Results & Discussion

To test JMorven in a distributed computing environment,
the GRID network is intended to be used via the Globus
Toolkit [1]. This allows many machines to communicate in
a virtual network and share resources allowing an amount of
processing power usually only achieved by supercomputers.
So far, JMorven only runs on single machines with one or
more processors. JMorven was executed on a ten processor
SUN server running Solaris 5.8 with Sun Java 1.4.203. Two
test models were used. For testing the Tuple-filter a coupled

Figure 7: Coupled tanks model showing two
tanks of water with heightsh1, h2 and there dif-
ferenceh12. Two inflow tapsqi1, qi1 and two
outflow plugsqi1, qi1 determine the flow in and
out of the tanks and the cross-flowqx describes
the flow between them.

tanks model (see fig. 7) with two inputs and two outputs was
used as shown below (only the first differential plane):

Constraint: sub (dt 0 h12) (dt 0 h1) (dt 0 h2)

Constraint: func (dt 0 qx) (dt 0 h12)

Constraint: func (dt 0 qo2) (dt 0 h2)

Constraint: func (dt 0 qo1) (dt 0 h1)

Constraint: sub (dt 0 q1flow) (dt 0 qi1) (dt 0 qx)

Constraint: add (dt 0 q2flow) (dt 0 qi2) (dt 0 qx)

Constraint: sub (dt 1 h1) (dt 0 q1flow) (dt 0 qo1)

Constraint: sub (dt 1 h2) (dt 0 q2flow) (dt 0 qo2)

Thesubandaddconstraints are organised by having the result
in the first variable specified. Thefuncconstraint is a qualita-
tive function where values can be mapped from the left vari-
able to the right variable which allows many types of function
to be implemented. For these models, these merely define the
monotonic increasing function (M+).

For testing the State-generator a coupled tanks model was
also used, but with only one input (to tank A) and one output
(from tank B) as shown below:



Constraint: func (dt 0 qo) (dt 0 h2)

Constraint: func (dt 0 qx) (dt 0 h12)

Constraint: sub (dt 0 h12) (dt 0 h1) (dt 0 h2)

Constraint: sub (dt 1 h1) (dt 0 qi) (dt 0 qx)

Constraint: sub (dt 1 h2) (dt 0 qx) (dt 0 qo)

The quantity spaces used for both consisted of nine fuzzy
intervals as detailed in section 1. Each model was run ten
times for each number of threads, and results show the mean
speedup achieved.

The results of the Tuple-filter are shown in figure 8. It is
clear to see that there is a benefit from the parallelisations.
There was quite a large error in times recorded for the Tuple-
filter - this is due to the very small execution time. The Tuple-
filter takes well under one second to complete for this model.
Using six threads over one almost decreases the execution
time by a factor of two, which is less than expected. This is
probably due to the very small amount of time taken for the
Tuple-filter. When the time taken is this small, the overhead
of creating and killing threads becomes apparent. A much
more complex model should show larger benefits from the
parallelisations, and will form part of future work.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Processors, n

S
pe

ed
up

 fa
ct

or
, S

(n
)

Tuple Filter Speedup

Figure 8: Execution times of the Tuple-Filter.
Shows speedup factor of Tuple-filter for multi-
ple numbers of processors using a coupled tanks
qualitative model with two inputs and two out-
puts.

The State-generator results are shown in figure 9. The ben-
efit of the parallelisations is apparent for a smaller numberof
threads - using four threads over one almost halves the run-
ning time of the State-generator. This benefit is less obvious
when using a larger number of threads. This is thought to be
due to the model used since the State-Generator splits the first
constraint into threads. The first constraint chosen may have
only a few valid tuples when recursed to the next constraint.
For example, if there are ten valid tuples in the first constraint
(C0) then ten threads will be spawned and each thread starts
the recursion in constraint C1. One of these threads might
not have any consistent tuples in C1 therefore would termi-
nate after a very short time. However one of the other threads
may have several valid tuples in the constraint C1 and would
require recursion to the next constraint for each of them there-
fore this thread may take substantially longer to execute. Op-
timising these parallelisations should allow a better advantage

from them which will form part of future work to be under-
taken.

Another possibility for the benefits to be less apparent than
expected might be due to the amount of semaphoring required
to protect the data from corruption when accessing it from
more than one thread simultaneously. For a distributed com-
puting environment, semaphoring would not be required as
all data would be copied for each process, which should al-
low more benefit from the parallelisations.

1 2 3 4 5 6 7 8
1

1.5

2

2.5

Number of Processors, n

S
pe

ed
up

 fa
ct

or
, S

(n
)

State Generator and Waltz Filter Speedup

Figure 9: Execution times of the Waltz-filter and
State-generator. Shows speedup factor of State
Generator and combined Waltz-filter for multiple
processors of threads for a coupled tanks qualita-
tive model with one input and one output.

6 Conclusion

JMorven was written in Java to allow it to be portable and run
on a wide variety of systems. JMorven has been successfully
tested on WindowsXP (SP1 and SP2), MacOS 10.1, Solaris
5.8 and Fedora Core 2. Due to the abstract parallel architec-
ture, JMorven can make use of the best available resources, be
it multiple processors or machines in a distributed computing
environment.

Parallelisations have been found in all three stages ofQual-
itative Analysiswhich offer a good speed increase. Execu-
tion time has been halved for a small number of processors
in the parallel stages for the models tested and greater bene-
fits should be apparent for more complex models and in dis-
tributed computing environments. The optimal speedup for
a parallel system is known as a linear speedup [19] which
states that execution time decreases linearly with the number
of parallel units used, or the sequential time1 should remain
constant independent of the number of parallel units. JMor-
ven does not experience this as not all parallel units have the
same amount of processing to carry out, however it is clear
from the results that parallelising is a viable technique tode-
crease execution time.

1sequential time = parallel time * no. of processors



7 Future Work
TheTransition Analysisstage is thought to be parallelisable,
this will be one area of future work of JMorven. This will be
complex to implement due to the nature of the data. Transi-
tions require an initial state to be analysed to determine the
next possible states, and these states require to be presentin
the envisionment2. This means that there is a lot of shared
memory being accessed at once therefore mutexes will be re-
quired to stop data corruption which makes the benefits of
parallelisation less apparent.

JMorven will incorporate an interval simulation engine.
Trying to parallelise this process will form the basis of some
future work.

JMorven was originally intended to be used in a distributed
computing environment therefore implementing JMorven
with the GRID as discussed above will form another area of
future work to be completed. Testing with a larger number of
parallel units will provide a better speedup model.

Finally, optimising the parallelisations to achieve closer to
linear speedup will be carried out as well as testing more com-
plex models.

References
[1] Globus. http://www.globus.org/, 2005.

[2] M. Platzner and B. Rinner. Parallel qualitative simu-
lation. Simulation Practice and Theory - International
Journal of the Federation of European Simulation Soci-
eties, 5(7-8):623–638, 1997.

[3] M. Platzner and B. Rinner. Toward embedded qualita-
tive simulation.IEEE Intelligent Systems, 15(2):62–68,
March-April 2000.

[4] M. Platzner and B. Rinner. Design and implementa-
tion of a parallel constraint satisfaction algorithm.Inter-
national Journal in Computers and Their Applications,
5(2):106–116, June 1998.

[5] B. Kuipers. Qualitative simulation.Artificial Intelli-
gence, 29(3):289–338, September 1986.

[6] G. M. Coghill. Mycroft: A Framework for Constraint-
based Fuzzy Qualitative Reasoning. PhD thesis, Heriot-
Watt University, September 1996.

[7] K. Forbus. Qualitative process theory.Artificial Intelli-
gence, 24:85–168, December 1984.

[8] Q. Shen and R. Leitch. Fuzzy qualitative simulation.
IEEE Transactions on Systems, Man and Cybernetics,
23(4):1038–1061, July-August 1993.

[9] D. S. Weld and J. de Kleer.Readings in Qualitative
Reasoning about Physical Systems, volume 1. Morgan
Kaufmann Publishers, Inc., 1990.

[10] J. de Kleer and B. Williams. Diagnosing multiple faults.
Artificial Intelligence, 32(1):91–130, April 1987.

2An envisionment is the exhaustive list of states that a model may
exist in as calculated during theQualitative Analysisphase

[11] G. M. Coghill, S. M. Garrett, and R. D. King. Learning
qualitative metabolic models. In R Lopez de Mantaras
and L. Saitta, editors,Proceedings of the 16th European
Conference on Artificial Intelligence, pages 445–449.

[12] B. Drabble. Excalibur: A program for planning and rea-
soning with processes.Artificial Intelligence, 62(1):1–
40, July 1993.

[13] U. E. Keller. Qualitative Model Reference Adaptive
Control. PhD thesis, Heriott-Watt University, Septem-
ber 1999.

[14] K. de Koning, B. Bredeweg, J. Breuker, and
B. Wielinga. Model-based reasoning about learner be-
haviour. Artificial Intelligence, 117:173–229, March
2000.

[15] D. Waltz. Understanding Line Drawings of Scenes with
Shadows. McGraw-Hill, New York, 1975.

[16] A. Morgan.Qualitative Behaviour of Dynamic Physical
Systems.PhD thesis, University of Cambridge, 1988.

[17] G. M. Coghill. Vector envisionment of compartmental
systems. Master’s thesis, University of Glasgow, April
1992.

[18] M. Wiegand. Constructive Qualitative Simulation of
Continuous Dynamic Systems. PhD thesis, Heriot-Watt
university, May 1991.

[19] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo.Limits
to Parallel Computation. Oxford University Press, Ox-
ford, UK, 1995.


