

University of Aberdeen, Electronics Research Group
Allan Bruce

1

Notes on Setup of Hosts and Dummynet

Machine for Simulation of Satellite Transfers

and World-Wide-Web Experiments

Allan Bruce

29th August 2001

University of Aberdeen, Electronics Research Group
Allan Bruce

2

Table of Contents

1 Introduction 3

2 Basic Unix Skills 4

 2.1 Navigating Unix 4

 2.2 Advanced Unix Techniques 5

 2.3 Program Installation 5

3 Tools Used 7

 3.1 Tcpdump 7

 3.2 Snoop 9

4 Web Transfers 11

 4.1 Worldwide Web Transfers 12

 4.2 Viewing Results 13

 4.3 Perl Script 15

 4.4 HTTP/1.1 16

 4.5 HTTP Headers 16

5 Dummynet 18

6 Persistent Connections 20

 6.1 Testing Persistence 20

7 Future Work 23

8 Conclusion 24

9 References/Bibliography 25

10 Appendix 26

University of Aberdeen, Electronics Research Group
Allan Bruce

3

1 Introduction
A small practical exercise was undertaken to observe properties of worldwide-web

transfers, and how to set up a simulated satellite link. This exercise comprised of

some relatively simple tasks including learning basic Unix skills. These tasks

provided basic experience in using some useful network analysis tools. The project

involved web transfers, particularly those over satellite networks. Ways in which

these slow, lossy networks can be improved will be discussed. One way in which

these transfers could be improved was thought to use persistent-http connections – a

default part of the HTTP/1.1 standard. This is an extension of the keep-alive

connection as found in HTTP/1.0. This was looked at in some detail and some

conclusions drawn.

This report examined various HTTP standards, particularly the way they are

implemented and interact with the TCP/IP protocol stack. Several tools were needed

to analyse the transfers taking place. These tools included tcpdump[1] and snoop[2].

To make sense of these results, tcptrace[3] and xplot[4] were used to show,

graphically, the transfers against a timescale. A timing diagram was also drawn by

hand to help understand the transfers.

For satellite links, a simulation program known as dummynet[5] was used. The

setup and configuration of this is detailed in Chapter 5. In the next Chapter, Unix

skills are discussed as this Operating System gave easiest access to network packets

transferred.

University of Aberdeen, Electronics Research Group
Allan Bruce

4

2 Basic Unix Skills

The tools required for this practical were all programs intended for Unixoid systems.

Some basic knowledge of the Unix operating system was required to use these tools

successfully. Knowledge required included the understanding and navigating of the

directory structure and network topology used. Computers used throughout this

exercise were Douglas and James. Douglas used Solaris 2.6 on a Sparc Processor and

was connected via an Ethernet LAN running at 10Mb/s to all other machines. The

/usr/local/ directory was stored on a single machine so a directory was made (using

the ‘mkdir’ command) on Douglas for additional programs required. This directory

was simply called /usr/local-douglas/. The reason for doing this was so that

tcpdump and snoop would collect local traffic and not traffic on a different area of

the network. All log files were stored within a ‘logs’ directory in the authors

homespace. A relevant README file describing each of the log files was kept.

2.1 Navigating Unix

To use Unix, several basic commands were required including those to navigate the

directory structure. Commands included:

 ls Lists all files in current directory

 cd Changes directory to that specified

 rm Removes file specified

 cp Copies files

 mv Used to move files or rename them

 more A basic text editor (also used ‘vi’)

Once the OS could be navigated successfully, the next obstacle was to understand

how Unix carried out commands or executed programs. For somebody to view files

and directories or execute programs, they must have permission. Permissions may

be set by the owner or the superuser. Generally the owner is not available to change

permissions, therefore superuser mode is required. In this mode, care must be taken

as severe damage may be done to the OS. To become a superuser, the ‘su’ command

was used and a valid password was required. To change permissions, the ‘chmod’

University of Aberdeen, Electronics Research Group
Allan Bruce

5

command is used along with an octet number and the filename. This sets

permissions for root, owner, and guests. A book[6] was used for help with the

directory structure and various commands.

2.2 Advanced Unix Techniques

A useful technique used in Unix is called piping. This links multiple commands

together, allowing users more flexibility. An example of a pipe used is shown below

 ls | more

The vertical line is called the pipe. In this example, the user requested to view the

files contained in the current directory and used the ‘more’ editor to view them. This

may be useful when a directory contains many files – too many to fit on one screen.

Another useful technique used was the ‘grep’ command. This filters lines of text files

to output only ones those specified. An example of this is shown in Chapter 3.2.

To configure Unix for a user, config files must be modified. The shell used on

Douglas was the basic ‘csh’, so the configuration file was ‘.cshrc’. This file contains

details about default paths and lots more.

2.3 Program Installation

The final piece of knowledge required was to know how to install additional

programs. Programs are often downloaded as source code within compressed

archives. The types downloaded for use in this project were .tar.gz. These files are

tar backups (which keep file/directory permissions and ownerships intact) and then

compressed using the gzip algorithm. To decompress these archives, two methods

can be used depending on which commands are available. The simplest method is to

merely type

tar xzvf filename.tar.gz (x – eXtract files, v – Verbose output, f – output

to File, z – gunZip file first)

This creates a directory called filename and extracts all files in the archive to this

directory. Unfortunately, the tar command on Douglas did not support the z option

University of Aberdeen, Electronics Research Group
Allan Bruce

6

(the option to gunzip the tar file). This meant that to extract the files, two commands

had to be used.

 gunzip filename.tar.gz

and

 tar xvf filename.tar

The first command extracted the gzip file to a tar file (filename.tar), and the last

command extracted the tar file to a directory called filename.

Once the source code files had been extracted they then needed to be compiled. Files

need to be compiled if binary executable files are not available. Generally source

code files only are available due to the many different kernel versions and directory

structures available. Compiling source code files produces a binary file to be

executed with the appropriate kernel version being used. To compile the programs,

two commands were used. The first command used was the ‘configure’ command,

typed as follows

 ./configure

This made a ‘Makefile’ specific to the machine being run on. This Makefile contained

information about the type of compiler available and directory structures as well as

many other variables. Once a valid Makefile exists, the ‘make’ command was

executed to compile the source to give binaries. Some programs require options

added to the make command, such as

 make depend

make install

 make all

These make file dependencies, place a copy of the binary into the system path or

compile many files at once respectively.

In this chapter, we have looked at how to use the Unix operating system and how to

install additional programs. In the next chapter, additional programs for network

analysis are discussed.

University of Aberdeen, Electronics Research Group
Allan Bruce

7

3 Tools used

The tools used in this practical were tcpdump[1] and snoop[2]. Tcpdump is a freely

available program as source code, so compiling was necessary. Snoop is a utility

provided free with Solaris Operating Systems. Both programs capture packets

transferred on a network interface. These packets are only displayed if they are

intended for the machine that tcpdump or snoop is run on unless the interface is run

in promiscuous mode. This mode allows the interface to capture all packets on the

network passing the interface. Both programs sound as though they do the same job

but they have subtle differences. Tcpdump operates at layer 3 of the OSI reference

model (the network layer) and as such only captures TCP segments or UDP

datagrams using the IP protocol. Snoop, on the other hand works on multiple layers

of the OSI reference model and captures many types of packets. A typical webpage

packet uses HTTP->TCP->IP->Ethernet (If on an Ethernet LAN) protocols. Snoop is

capable of capturing the headers of all of these for analysis. The reason tcpdump

was also used was because snoop doesn’t offer as much detail as tcpdump for TCP,

the main protocol studied in this practical.

3.1 Tcpdump

Tcpdump was downloaded from the internet (http://www.tcpdump.org) along with

a necessary library called libpcap. This library was required to filter packets for use

with tcpdump. Libpcap was installed by unarchiving it, configuring then compiling

as explained in section 2.3. In this case, tcpdump would not install easily on Douglas

as the superusers configuration file was invalid. A binary copy was obtained from

another Sparc machine using the same operating system within the network.

Tcpdump was installed with ease on the authors home machine running RedHat

Linux 7.1[7] using the method detailed in section 2.3.

To run tcpdump the following was typed at the prompt

 tcpdump options expression > filename

There are many options for use with tcpdump, but only 5 were used in the duration

of this practical, these included:

University of Aberdeen, Electronics Research Group
Allan Bruce

8

-s96 this option captures the first specified number of bytes of the

TCP segment. 56 bytes is the default as this covers the TCP

header, but 96 bytes were used to capture TCP header options

also

-S this option prints absolute TCP sequence numbers instead of

relative ones. This makes analysis of transmitted segments

easier when multiple connections are in use

-tt this option prints an unformatted timestamp on each line

rather than in human readable form. The reason for this was

because xplot[4] prefers this format

-n this option prints IP address instead of domain names. This is

much faster as tcpdump does not need to look up addresses

for each capture

-w filename this option prints packets in raw format. This was required for

a tcptrace input file.

Expressions in tcpdump are for filtering packets to capture only relevant ones. There

are many options available to the user here but the ones used in the practical were

 port domain or 80 and host hostname

Port ‘domain’ is an alias for the known port used for DNS queries so that they can be

captured by tcpdump. The program also captured packets which are intended for or

transmitted from hostname and use port 80 (the default port used for web-servers).

James was used for transfers as the Netscape[8] browser was not installed on

Douglas. The browser was loaded on James and the X-windows screen was diverted

to a network connection. This was done using the following script

 rlogin james

 <insert password>

 setenv DISPLAY Douglas:0.0

 netscape

This makes it appear that Netscape is running on Douglas.

All output filenames were recorded and logged with the options used and web-

server used. All logs were kept in /home/allan/logs/

University of Aberdeen, Electronics Research Group
Allan Bruce

9

An example tcpdump command used is shown below

tcpdump –s96 –S –tt –n port domain or 80 and host james >

/home/allan/logs/001.tcpdump

These output options were used for analysis with ‘xplot’ using a ‘perl’ script for

analysis. For analysis using ‘tcptrace’[3], the –w option was required. The output of

tcpdump shows the time of packet, sequence numbers, acknowledgment numbers,

flags and window sizes. These TCP properties are required knowledge for

understanding transfers. A detailed description can be found in TCP/IP Illustrated,

Volume 1[9]

3.2 Snoop

At the same time as running tcpdump, another terminal was opened to run snoop,

thus capturing the same packets at the same time. The reason for this was to analyze

the types of data transferred. Snoop is executed in the same way as tcpdump

however the options are different. The options used were

 -ta this option prints a timestamp beside each captured packet

 -v this option prints a verbose output – quite extensive

The expressions used were of the same type as tcpdump however the format was

slightly different. Snoop requires

 port domain or port 80 and host james

Notice the inclusion of the second ’port’. An error is produced if this additional

‘port’ is omitted. The verbose output means that captures were very large so a pipe

and grep were often used to filter relevant inforation. This was done as follows

 snoop options expression | grep wantedfilter > filename

The grep command is case sensitive so wantedfilter must be typed correctly to filter

correctly. Sometimes the ‘get requests’ only were desired, therefore ‘grep GET’ was

used. Care must be taken here to ensure that necessary information is not omitted. If

in doubt, snoop was left to output the full capture. Grep could then be used on the

filename at viewing time.

University of Aberdeen, Electronics Research Group
Allan Bruce

10

The output form of snoop depends on which options used. With the options used in

this practical the output had a form of showing HTTP get request, referrer,

connection type, user-agent, host and accepted formats. These HTTP protocol

properties are discussed in detail in TCP/IP Illustrated, Volume 3[10].

In the next chapter, web transfers are captured using the tools described above.

These web transfers are analysed and some of their properties discussed.

University of Aberdeen, Electronics Research Group
Allan Bruce

11

4 Web Transfers

A basic web-page was required to analyze transfers, so Netscape Composer was

used. A simple page was made with some text, a jpeg background image and 3 gif

images. This gave a total of 5 objects for transfers with a web server. The webpage

and its source can be found in Appendix A1.

To start with, this web page was published on a private ISP web-space and a transfer

was captured using tcdump. The transfers were analyzed paying close attention to

timing and sequence numbers. A timing diagram of this can be seen in Appendix

A2. Some acknowledgements were delayed but no segments were retransmitted.

The reason for the delayed ACKs was caused by some segments arriving out of

order, this is due to a segment being delayed in transport. This is common as IP

packets are not sent along the same path - one router may have been congested

resulting in a small delay on forwarding a packet.

Mostly, 2 segments are ACKed at once reducing the ACKs by half, however at one

point 3 segments were ACKed. This is normal TCP behaviour; the receiver should

ACK at least every other full sized segment. At times the client received segments

quicker than it was processing them, the server paused transfers due to the receivers

window size being reported as zero. The client then processed segments and

acknowledged 3 at once and increasing the window size to allow transfer to resume.

Another interesting point no notice was that there were 3 or 4 TCP connections

opened for transferring all 5 objects. When 4 connections were transferred, it was

observed that the smallest image was embedded with the html page. This was found

by examining the sequence numbers in each connection and relating the difference to

the object sizes. For example, each connection had an initial sequence number and a

final one. The difference between these gave the total number of bytes transferred

including overheads from IP protocol. Once the overheads were removed, the actual

number of bytes transferred was found. This could then be compared to the object

sizes and the specific object may be found. This is a recognised feature of the

HTTP/1.0 standard (HTTP/0.9 would use a separate connection for each object

resulting in 5 connections. Another method of finding what is transferred is to look

University of Aberdeen, Electronics Research Group
Allan Bruce

12

at the ‘get’ requests within snoop. This method verified the proposed objects using

the sequence number method.

Another property noticed was that with the HotJAVA web-browser, there were

usually 2 connections open at the same time although only 1 was receiving data at a

time (data was sent and the connection remained open although no more data was

transferred through it). It appears that either a connection was not closed until

another one was required, or the delay of a closed connection was holding up the

opening of another. It was thought to be the latter as connections remained open for

several segment transfers although were not being utilized at all*.

Some data was transferred from the client to the server. Snoop was run and the

transfers were undertaken again. It was found that these transfers from client to

server were ‘get requests’.

4.1 Worldwide Web Transfers

The example web page (see Appendix A1) was published on several web servers

worldwide. These web servers had different properties, such as path delay and hops

between client and server (see Appendix A3). Several interesting properties were

recorded.

Some connections were closed by the server as expected (immediately after no more

data is required, a FIN is sent) however some connections remained open for a long

time afterward. The connections that remained open had two different ways of

closing the connections. One way, was that no FIN flags were sent and a RST flag

was sent after a timeout. In the other method, a connection remained open until the

client required other connections, for example looking at another web page. In this

method, the client sent FIN flags but no ACKs were returned by the server. The

client kept on resending, but no ACKs. Eventually when the client required the

connections, a RST flag was sent to the server, requiring no acknowledgement and

hence closing the connection. This is a property of keep-alive connections with

* This web browser was the default browser installed on Douglas. The version is not known. It is
unknown why only 1 connection was actively transferring data and why there was a limit of two
connections opened at one time.

University of Aberdeen, Electronics Research Group
Allan Bruce

13

HTTP/1.0 although headers within the protocol set timeouts, they were not always

obeyed.

Netscape 6.1 was installed on an iMac running MacOS 9.x. This uses HTTP/1.1 with

persistence and keep-alive connections. With these keep-alive connections, it was

found that they did adhere to the conditions set in the http header. The two

conditions were ‘max’ and ‘timeout’.

It was also noted that one connection to a site contained a hop delay of over 600ms. It

was thought that this could have been a satellite hop.

4.2 Viewing Results

One method used to view the results was running tcpdump using the –r option

which reads a raw tcpdump capture and presents a readable form. The standard

readable form also used the –s96, –S, –tt, and –n options as described in Chapter 3.1.

These readable forms were input to tcptrace[3] and several plots were produced.

Tcptrace is a network analysis tool written by Shawn Ostermann. It takes inputs

from several packet capturing tools and produces sets of graphs of common

properties of the transfers including the MSS, window size, RTT and sequence

number plots. These properties are discussed in detail in TCP/IP Illustrated Volume

1[9]. Tcptrace was executed by the following command

tcptrace –S filename

This takes input from a tcpdump readable format as discussed above. These plots

were then plotted graphically by using xplot[4]. With these simple transfers, these

plots were not very informative as each connection had only a few segments of TCP

data. An example ftp transfer of a text file was made and tcptrace was run to view a

transfer of several hundred segments. This can be seen in Appedix A4. This allowed

better use of the program as retransmissions and delays were much more apparent.

The plot was relatively linear and the slope gave the throughput of the connection.

There was one retransmission occurrence. This was seen by a negative slope

between two points. Here the sequence number dropped instead of increasing due

to the retransmission.

University of Aberdeen, Electronics Research Group
Allan Bruce

14

The round trip times (RTT) were recorded for all web transfers using 2 different

connection styles. One connection was on an Ethernet LAN with access to the

internet via a high speed 100Mb/s link. The other was via a V90 class modem using

an ISP to access the internet. The following table shows these results

RTT (ms)

RTT
(ms)

RTT after
connection
setup (ms)

RTT after
connection
setup (ms)

Site

High Speed

V90
modem

High Speed
100Mb/s

V90
modem

Tcpdump
output

filename
www.erg.abdn.ac.uk

6

347

12 887 x-07-01-01-
tcpdump

www.yodadrinkslager.screaming.net

34

378

42 847 x-07-01-02-
tcpdump

www.smirnoff.fresserve.co.uk

34

366

64 761 x-07-01-03-
tcpdump

pegasus.phys.uh.edu

180

364

204 766 x-07-01-04-
tcpdump

www.cs.pdn.ac.lk

1150

827

2187 1294 x-07-01-05-
tcpdump

Table 1: Site Statistics

Each RTT was calculated 3 times and an average value obtained. Table 2 shows the

server software and operating system used on each server

Site Server OS
www.erg.abdn.ac.uk Apache 1.3.11 Solaris

www.yodadrinkslager.screaming.net Zeus 3.3 FreeBSD
www.smirnoff.fresserve.co.uk Microsoft IIS 5.0 Windows2000

pegasus.phys.uh.edu Apache 1.3.6 Linux 2.2.6
www.cs.pdn.ac.lk Apache 1.3.20 Solaris 2.7

www.burbank.co.uk Microsoft IIS 4.0 Windows NT4
www.test.globalweb.co.uk Apache† Linux

Table 2: Server Software and OS

As can be seen from the results in table 1, a site may have a lower RTT on the slow

link which is not expected. This is affected by the route taken, i.e. how many hops

and different geographical route. Table 2 is useful to find out if the web servers

† The version of Apache and Linux was undeterminable by the website used (www.netcraft.com) for
finding software and OS versions

University of Aberdeen, Electronics Research Group
Allan Bruce

15

support HTTP/1.1. All of them did but Microsoft IIS 4.0 does not use keep-alive

connections. Table 3 below shows the sites and there corresponding traceroute

outputs for both connection speeds.

Site Traceroute output
high speed

Traceroute output V90
modem

www.erg.abdn.ac.uk 5ms : 2 hops undeterminable : 19 hops
www.yodadrinkslager.screaming.net 32ms : 15 hops 293ms : 12 hops

www.smirnoff.fresserve.co.uk 35ms : 16 hops 290ms : 11 hops
pegasus.phys.uh.edu 150ms : 27 hops 414ms : 21 hops

www.cs.pdn.ac.lk 1800ms : 24 hops 775ms : 24 hops
www.burbank.co.uk 122ms : 26 hops 417ms : 17 hops

www.test.globalweb.co.uk 48ms : 18 hops 332ms : 17 hops
Table 3: Traceroute Statistics

Site 5 had large delays from the high speed link, one hop containing over 600ms –

this was thought to be due to a satellite link. The reason for the very low RTT on site

1 with the high speed access is due to the web server being located within the same

VLAN. A possible explanation for the delays greater than 1000 ms and 30 hops is

due to external packets being discarded by a firewall. The traceroute output details

the total number of hops. These were then split into domain hops, shown in

Appendix A3.

4.3 Perl Script

An alternative method for analyzing the web transfers was to use a perl script

supplied with the xplot source code. This script produced sequence number plots for

all connections on the same graph allowing the transfers to be analyzed more easily.

To run the script, the following was typed at a prompt

 perl tcpdump2xplot.pl filename

This then produced files with .xplot suffix. These could then be plotted using xplot

as normal for analysis.

University of Aberdeen, Electronics Research Group
Allan Bruce

16

4.4 HTTP/1.1

Further web transfers were undertaken using Microsoft Internet Explorer 5.0[11] and

Netscape Communicator 6.1. This allowed the transfers to use HTTP/1.1 connections

if the server was capable. Results showed that with this standard, fewer TCP

connections were required to transfer objects. This reduced overheads, and

increased the throughput of the connection. Transfers took differing times to

complete with Netscape and Internet Explorer. One reason for this is due to file

types being transferred. In the HTTP header, the web client software lists several

filetypes it can use and in a certain order of preference. The web server then

transfers an object in this order meaning that Internet Explorer may download a

*.png file whereas Netscape may download a *.tif.

In general it was found that Internet Explorer was the quickest for browsing. It

displayed incomplete objects on screen from early on in the transfer. Netscape

seemed to wait until files were almost completely downloaded before displaying

anything on screen.

4.5 HTTP Headers

Several options are present in an http header. Originally, in HTTP/1.0 there were

very few options but now there are many more implemented in HTTP/1.1. The most

common options of use throughout this project were the keep-alive options. These

are ‘max’ and ‘timeout’. ‘Max’ sets the maximum number of ‘get’ requests within a

single connection – usually set to 100. ‘Timeout’ sets the idle time in seconds after

transfer that a connection will automatically close, usually 15 seconds. The close is

usually initiated by the server utilising a ‘standard’ 4-way close as determined in the

TCP protocol.

When a get request is made, the client asks for a specific object and HTTP standard.

Details of which type of preferred connection exist here also. The header tells the

server what version of browser/OS it is running and accepted object formats in order

of preference. The client will also detail what character set it accepts and what

language it is using.

University of Aberdeen, Electronics Research Group
Allan Bruce

17

On response to an HTTP request, the server replies with the HTTP standard it will

use for the transfer and what object will be sent depending on those available (and

compatible with the client). The header also contains the length of the object and

details of connection types.

Some other headers are contained but it is not known what these were used for.

University of Aberdeen, Electronics Research Group
Allan Bruce

18

5 Dummynet

As a further study to the project, it was decided to simulate a satellite hop to analyse

behaviour. To setup a satellite simulation, an Intel 486 DX2 66 workstation was used

running FreeBSD 2.2.8-release. This distribution implements an IP firewall which is

fully configurable. This firewall is known as dummynet. Set up of this is not

difficult but many options are required before any transfers will work with satellite

simulation.

To setup the dummynet, two network interface cards were installed on the

dummynet machine and each connected to a different computer (see Appendix A5).

First, the kernel had to be recompiled so the machine would act as a bridge (in this

mode it would forward appropriate packets between interface cards). This is done

by editing the kernel file. A copy of the generic kernel was made using

 cd /usr/src/sys/i386/conf

 cp GENERIC <newname>

The new copy was then edited and the following options added

 options BRIDGE

 options dummynet

 options IPFIREWALL_DEFAULT_TO_ACCEPT

 options IPDIVERT

 options IPFW_DIVERT_RESTART

Once completed, the new kernel was then recompiled by

 /usr/sbin/config <newname>

 cd ../../compile/<newname>

 make depend ; make ; make install

This procedure took around one hour to complete on the dummynet machine. A

reboot was required for the machine to be used. Finally, two more options were

required to enable configuration of dummynet. These were activated by

 sysctl –w net.link.ether.bridge=1

 sysctl –w net.link.ether.bridge_ipfw=1

University of Aberdeen, Electronics Research Group
Allan Bruce

19

With these options enabled, the dummynet was then set up for use but needed to be

configured to allow simulation of packets.

To allow traffic flow between test machine and outside, the following must be used

 ipfw add 100 pass ip from <test machine> to any

 ipfw add 200 pass ip from any to <test machine>

Where <test machine> is the IP address of the machine being used to browse web

pages and NOT the dummynet machine. (If traffic not intended for test bed is not

wanted then the following command must be entered

 ipfw add 65500 deny ip from any to any)

This allowed the dummynet machine to merely act as a bridge. Pipes were required

to configure delays, losses and bandwidth limitation. For full configuration, the

following was needed

 ipfw add pipe 1 ip from <test machine> to any

 ipfw add pipe 2 ip from any to <test machine>

This configuration is shown in Appendix A6. At the start it was thought that 4 pipes

were needed and each pipe required a direction specified, in other words outgoing

(out) or incoming (in). It could be set up in this way, but ambiguities arose when

calculation of RTT was considered. Each pipe would be set up with a delay of X,

therefore with 4 pipes the RTT was thought to be 4X but was actually found to be

only 2X. Due to this, only 2 pipes were used.

Next, the pipes were configured using

 Ipfw pipe N config bw XXXKbit/s delay YYY plr ZZZ

Where N was the number of pipe to be configured, XXX was the limiting bandwidth,

YYY was the delay in milliseconds and ZZZ was the packet loss rate expressed as a

normalised percentage, e.g. 4% was written as 0.04.

HTTP/1.1 uses persistence as default for transferring objects. Many people have

discussed advantages and disadvantages of this. The next chapter looks at how

persistence affects the transfer of web pages, looking closely at number of

connections used and the amount of time taken to transfer all the data.

University of Aberdeen, Electronics Research Group
Allan Bruce

20

6 Persistent Connections

Most new web browsers and web server software support the HTTP/1.1 standard.

Persistent connections are a default part of this new standard and as such, a web

server administrator has to go to large lengths to disable this feature, increasing the

likelihood of persistent transfers. Persistence is very similar to the keep-alive

connections in HTTP/1.0 and in many cases is thought to be merely an addition to the

old standard.

Persistence was developed specifically with small transfers in mind as most transfers

require 3 segments for connection and 4 for disconnection resulting in a large

percentage of overhead. With small objects on unique connections, the transfer

rarely gets beyond the TCP slow-start stage (if TCP is used although it is by far the

most popular protocol for web transfers). Persistence allows many objects to be

transferred in a single connection. If many objects can be transferred on the same

connection then overhead is reduced as less connection/disconnection segments are

required. With a single connection for multiple objects, the TCP protocol can then

extend beyond the slow-start phase thus network utilisation is increased.

There are many other features of persistence not discussed in this practical. These

can be found in RFC 2616[12] or in the book ‘Web Protocols + Practice’[13].

6.1 Testing Persistence

To see the effects of persistence, some basic tests were undertaken. These test

included transferring the web-page from previous experiments and the BBC main

webpage (http://www.bbc.co.uk). These transfers were made using the dummynet

to simulate different scenarios. These scenarios included no delay, a fast satellite and

a slow satellite‡. The satellites were given higher bit error rates due to the small size

of webpage to ensure some packets were lost throughout the transfer.

The main reason for the development of persistence was to reduce times taken to

transfer web pages and therefore increase utilisation of the network medium. To test

‡ A slow satellite was simulated with a 2000ms RTT, a bandwidth of 136Kbit/s and a packet loss rate
of 4%. A fast satellite was simulated with a 1200ms RTT, a bandwidth of 544Kbit/s and a packet loss
rate of 4%.

University of Aberdeen, Electronics Research Group
Allan Bruce

21

this, several of the test web-pages were transferred in each conditions mentioned

above using HTTP/1.0 and HTTP/1.1 with persistence. Each transfer was carried out

3 times and an average transfer time obtained. The results of the slow satellite

scenario can be seen below in table 4.

Site
Time taken to transfer using

Netscape 4.7
Time taken to transfer using

Netscape 6.1
www.smirnoff.freeserve.co.uk 6.687 seconds 6.026 seconds

pegasus.phys.uh.edu 8.996 seconds 9.103 seconds
www.burbank.co.uk 10.175 seconds 9.946 seconds

www.test.globalweb.co.uk 12.342 seconds 11.682 seconds
Table 4: Average Transfer Times of Slow Satellite Scenario

As can be seen from the table, transfer times were reduced by using Netscape 6.1.

This was thought to be a direct result of using persistent connections. There is one

exception to this – pegasus.phys.uh.edu transfers were quicker when Netscape 4.7

was used. This was due to one long transfer time when using Netscape 6.1 which

affected the average considerably. This long time was thought to be due to many

packets lost in this transfer (the PLR was consistent for all tests however dummynet

uses a random process to determine which packets will be lost which will

approximate to the specified PLR over a range of transfers). To get accurate results,

these tests would have to be repeated many more times.

Another reason for the implementation of persistence is to reduce the amount of

connections to reduce server load. It has been seen that the use of persistence is

faster, so to ensure this is due to several objects being transferred down a single

connection, a further test was carried out.

This test carried out transfers on the test web-pages again and the amount of

connections per transfer was recorded. It was found that using persistence, each

transfer used less connections. For no satellite simulation three connections were

mostly required but sometimes only one was required. When the delay was

increased, the amount of connections also increased. For the transfer of a single web-

page over the slow satellite, often ten connections were required. Some of these

connections were reset after a SYN packet was received from the server. It is

unknown why this was the case.

University of Aberdeen, Electronics Research Group
Allan Bruce

22

Another test carried out included loading the BBC website to see how many

connections were required over the different conditions. For no satellite simulation,

35 connections were opened and transfer took around 5 seconds. For slow satellite

simulation, the number of connections increased to between 85 and 90 connections

and transfer times took up to 72 seconds. This was much longer than Netscape 4.7

took, it required 88 connections but only 53 seconds.

Finally, one of the test web-pages was reloaded 10 times in quick succession to see

how many connections would be needed overall. For no satellite simulation, it was

found that only 4 connections were opened throughout the duration of this test. This

is one of the features of persistence; although there is no more data required for this

transfer, the hosts will keep the connection open for the transfer of more data if

required.

Due to restrictions in time, these tests were not carried out as extensively as hoped

but this sets a good foundation for some future work.

University of Aberdeen, Electronics Research Group
Allan Bruce

23

7 Future Work

One aim of this project was to setup a satellite simulation and observe some transfers

of worldwide-web transfers. This looked at the use of persistence to reduce transfer

times across satellite networks. Time did not allow extensive research in this area so

future work can be recommended.

It is recommended to continue research on the use of persistence to reduce transfer

times across these networks. It has been seen that transfer times can be reduced for

small web-pages but larger transfers appear to take more time than without using

persistence. This would include many transfers of the test web-pages and an average

obtained. Once completed, a test to transfer much larger web-pages should be

undertaken and an average obtained. This would give an idea of the

advantages/disadvantages of persistence in a real scenario.

The use of persistence when using proxy connections would be another area of study

which would be of benefit. Proxy servers are using persistence to allow users to have

only one connection to them but transferring multiple objects.

University of Aberdeen, Electronics Research Group
Allan Bruce

24

8 Conclusion

An aim of this project was to use network tools to analyse transfers. This included

installing and understanding how to run the tools. By using these tools, it is possible

to see many breakdowns in transmissions and how connections are utilized. This

leads the path for useful analysis of much more complex transfers.

Another aim was to be able to set up a reliable satellite simulation to carry out tests

on. This was done using dummynet, an implementation of the FreeBSD operating

system and configuring all necessary parameters. All properties of this dummynet

are programmable, e.g. the ‘packet loss rate’ (PLR) and the delay. Once this was

setup, transfers could commence and analyses undertaken.

Finally, the last aim was to look at various HTTP standards and how they affect

transfers. This allowed several tests to be carried out to see if using certain standards

resulted in quicker communication.

All of these aims were met and some conclusions can be drawn. The suite of tools

were used successfully and offered very good methods to analyse transfers. The

satellite simulation was set up and was found to be very stable and accurate. The use

of persistence in HTTP/1.1 was looked at and found to have positive effect on some

transfers. Further work has been recommended to take this last step further.

University of Aberdeen, Electronics Research Group
Allan Bruce

25

9 References / Bibliography

[1] tcpdump, http://www.tcpdump.org

[2] snoop, Sun Microsystems, http://www.sun.com

[3] tcptrace, Shawn Ostermann, http://www.tcptrace.org

[4] xplot , ftp://mercury.lcs.mit.edu/pub/shep/

[5] dummynet, FreeBSD, http://www.freebsd.org

[6] Teach Yourself Linux In 24 Hours, Sams

[7] Redhat Linux, http://www.redhat.com

[8] Netscape Navigator, http://www.netscape.com

[9] “TCP/IP Illustrated, Volume I”,

[10] “TCP/IP Illustrated, Volume III”,

[11] Microsoft Internet Explorer, http://www.microsoft.com/ie/

[12] http://www.ietf.org/rfc/rfc2616.txt

[13] “Web Protocols and Practice”,

University of Aberdeen, Electronics Research Group
Allan Bruce

26

10 Appendix

Appendix A1:-Example Web Page (with no background)

Analysing the behaviour of http
protocol variants

There are few variants of http protocol used in various commercial web clients and servers. The characteristics of these http
protocols can be significant to specific network conditions. The main aim of this study is to understand the behaviour of http
protocol variants and their interactions with TCP.

Study is being undertaken at the Electronics Research Group. The data collected will be
analysed and will be used to build a web traffic model in a network simulator. This is done as a partial requirement for a project
evaluating the TCP protocol performance in next generation satellite systems.

Some useful tools being used for this project include tcpdump and snoop - tools for monitoring network traffic on a specified
interface. "tcptrace" and "xplot" will be used for trace analysis.

Main research is by Mahesh Sooriyabandara and Allan Bruce and supervised by Dr. G. Fairhurst.
Date : 06-07-2001

University of Aberdeen, Electronics Research Group
Allan Bruce

27

Example Web Page (source code)
<html>

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

 <meta name="GENERATOR" content="Mozilla/4.7 (Macintosh; I; PPC) [Netscape]">

 <title>webtest.htm</title>

</head>

<body text="#000000" bgcolor="#FFFFFF" link="#0000FF" vlink="#990066" alink="#FF0000"

background="bathroom_tile_texture.jpg">

<center>

<u>Analysing the behaviour of http protocol variants</u>

<p></center>

<p>

<p>There are few variants of http protocol used in various commercial web

clients and servers. The characteristics of these http protocols can be

significant to specific network conditions. The main aim of this study

is to understand the behaviour of http protocol variants and their interactions

with TCP.

Study is being undertaken at the <img

SRC="aberdeenuniversitylogo.gif" height=50 width=229 align=CENTER>Electronics

Research Group. The data collected will be analysed and will be used

to build a web traffic model in a network simulator. This is done as a

partial requirement for a project evaluating the TCP protocol performance

in next generation satellite systems.

<p>Some useful tools being used for this project include tcpdump and snoop

- tools for monitoring network traffic on a specified interface.

"tcptrace" and "xplot" will be used for trace analysis.

<p>Main research is by Mahesh Sooriyabandara and Allan

Bruce and supervised by Dr. G. Fairhurst.

Date : 06-07-2001

</body>

</html>

University of Aberdeen, Electronics Research Group
Allan Bruce

28

Appendix A2:- Timing Diagram

University of Aberdeen, Electronics Research Group
Allan Bruce

29

University of Aberdeen, Electronics Research Group
Allan Bruce

30

University of Aberdeen, Electronics Research Group
Allan Bruce

31

Appendix A4:- Traceroute diagrams

Route can be seen as 15 hops in total over 7
domains (5 intermediate)

Traceroute Hops Split Into Domains

www.yodadrinkslager.screaming.net
Web server

139.133

194.81
146.97

193.63

195.66

213.200

212.74

TEST MACHINE
Web browser

 1 milliways (139.133.204.64) 2.861 ms 2.160 ms 2.164 ms
 2 gw34.abdn.ac.uk (139.133.34.1) 4.812 ms 5.777 ms 4.753 ms
 3 gwkccs.abdn.ac.uk (139.133.7.4) 7.865 ms 16.373 ms 5.130 ms
 4 aclarke-gw.abman.net.uk (194.81.60.94) 5.820 ms 5.660 ms 5.780 ms
 5 146.97.250.17 (146.97.250.17) 13.479 ms 30.888 ms 28.902 ms
 6 146.97.37.29 (146.97.37.29) 14.096 ms 10.927 ms 19.769 ms
 7 pos9-0.edin-scr.ja.net (146.97.35.61) 23.848 ms 13.276 ms 17.556 ms
 8 pos0-0.leed-scr.ja.net (146.97.33.26) 19.888 ms 24.736 ms 17.311 ms
 9 pos2-0.lond-scr.ja.net (146.97.33.30) 23.376 ms 21.598 ms 30.466 ms
10 146.97.35.2 (146.97.35.2) 23.357 ms 27.087 ms 28.268 ms
11 linx-gw.ja.net (193.63.94.249) 23.704 ms 28.047 ms 32.986 ms
12 fe3-0.lon0.nacamar.net.uk (195.66.224.32) 22.672 ms 22.702 ms 24.028 ms
13 pos4-1-0.lon1.worldonline.net.uk (213.200.77.38) 33.415 ms 25.656 ms 32.012 ms
14 ge10-0-4.lon8.as9105.net (212.74.111.202) 29.022 ms 37.305 ms 24.084 ms
15 pos10-0.mk0.as9105.net (212.74.111.129) 30.608 ms 24.179 ms 29.786 ms

University of Aberdeen, Electronics Research Group
Allan Bruce

32

Route can be seen as 16 hops in total over 5 domains

(3 intermediate)

TEST MACHINE
Web browser

www.smirnoff.freeserve.co.uk
Web server

Traceroute Hops Split Into Domains

139.133

194.81

146.97

128.86

195.92

 1 milliways (139.133.204.64) 3.036 ms 2.604 ms 2.105 ms
 2 gw34.abdn.ac.uk (139.133.34.1) 4.210 ms 4.241 ms 5.937 ms
 3 gwkccs.abdn.ac.uk (139.133.7.4) 4.493 ms 14.606 ms 4.840 ms
 4 aclarke-gw.abman.net.uk (194.81.60.94) 5.186 ms 5.371 ms 4.981 ms
 5 146.97.250.17 (146.97.250.17) 11.828 ms 9.563 ms 8.884 ms
 6 146.97.37.29 (146.97.37.29) 12.928 ms 20.469 ms 12.093 ms
 7 pos9-0.edin-scr.ja.net (146.97.35.61) 11.437 ms 14.512 ms 14.121 ms
 8 pos0-0.leed-scr.ja.net (146.97.33.26) 30.714 ms 17.493 ms 23.295 ms
 9 pos2-0.lond-scr.ja.net (146.97.33.30) 27.018 ms 23.170 ms 25.790 ms
10 146.97.35.2 (146.97.35.2) 25.651 ms 23.836 ms *
11 uk-gw.ja.net (128.86.1.240) 34.364 ms 29.274 ms 28.189 ms
12 195.92.202.73 (195.92.202.73) 28.300 ms 30.954 ms 26.050 ms
13 195.92.201.2 (195.92.201.2) 32.232 ms 22.139 ms 39.443 ms
14 195.92.201.99 (195.92.201.99) 30.249 ms 32.050 ms 33.738 ms
15 195.92.200.136 (195.92.200.136) 41.142 ms 33.795 ms 35.176 ms
16 alteonG1.svr.pol.co.uk (195.92.195.141) 35.086 ms 30.538 ms 31.456 ms

University of Aberdeen, Electronics Research Group
Allan Bruce

33

 Route can be seen as 25 hops in total over 6 domains

(4 intermediate)

Traceroute Hops Split Into Domains
139.133

194.81

146.97

193.63

198.32

129.7

Pegasus.phys.uh.edu
Web server

TEST MACHINE
Web browser

 1 milliways (139.133.204.64) 2.956 ms 2.103 ms 2.101 ms
 2 gw34.abdn.ac.uk (139.133.34.1) 4.951 ms 4.891 ms 4.765 ms
 3 gwkccs.abdn.ac.uk (139.133.7.4) 5.255 ms 16.300 ms 5.009 ms
 4 aclarke-gw.abman.net.uk (194.81.60.94) 6.665 ms 5.533 ms 5.623 ms
 5 146.97.250.17 (146.97.250.17) 10.686 ms 10.713 ms 9.235 ms
 6 146.97.37.29 (146.97.37.29) 14.946 ms 20.399 ms 25.039 ms
 7 pos9-0.edin-scr.ja.net (146.97.35.61) 14.822 ms 17.958 ms 20.820 ms
 8 pos0-0.leed-scr.ja.net (146.97.33.26) 26.630 ms 26.973 ms 21.264 ms
 9 pos2-0.lond-scr.ja.net (146.97.33.30) 28.960 ms 25.399 ms 25.840 ms
10 146.97.35.6 (146.97.35.6) 22.284 ms 22.070 ms 23.392 ms
11 us-gw2.ja.net (193.63.94.91) 28.271 ms 22.696 ms 23.660 ms
12 193.62.157.18 (193.62.157.18) 91.709 ms 90.632 ms 87.277 ms
13 ny-pop.i2.ja.net (193.62.157.210) 95.792 ms 95.864 ms 97.488 ms
14 clev-nycm.abilene.ucaid.edu (198.32.8.29) 106.189 ms 116.730 ms 105.653 ms
15 ipls-clev.abilene.ucaid.edu (198.32.8.25) 113.960 ms 109.556 ms 111.011 ms
16 kscy-ipls.abilene.ucaid.edu (198.32.8.5) 129.682 ms 126.980 ms 127.155 ms
17 dnvr-kscy.abilene.ucaid.edu (198.32.8.13) 138.995 ms 130.486 ms 133.434 ms
18 scrm-dnvr.abilene.ucaid.edu (198.32.8.1) 153.115 ms 157.528 ms 160.970 ms
19 losa-scrm.abilene.ucaid.edu (198.32.8.18) 163.873 ms 163.366 ms 162.010 ms
20 hstn-losa.abilene.ucaid.edu (198.32.8.22) 195.996 ms 201.506 ms 198.599 ms
21 LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 194.006 ms 192.559 ms 196.165 ms
22 INTRALINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.37) 199.774 ms 204.746 ms 194.647 ms
23 UH.GIGAPOP.GEN.TX.US (198.32.236.30) 205.365 ms 201.777 ms 197.224 ms
24 vespasian-vlan10.gw.uh.edu (129.7.254.254) 205.210 ms 196.519 ms 204.796 ms
25 Pegasus.Phys.UH.EDU (129.7.2.50) 204.640 ms 197.582 ms 204.103 ms

University of Aberdeen, Electronics Research Group
Allan Bruce

34

Route can be seen as 26 hops in total over 9 domains

(7 intermediate)

Traceroute Hops Split Into Domains
139.133

194.81

146.97

128.86

195.66

134.222

205.171

unknown

62.224

TEST MACHINE
Web browser

www.burbank.co.uk
Web server

 1 milliways (139.133.204.64) 2.879 ms 3.009 ms 2.127 ms
 2 gw34.abdn.ac.uk (139.133.34.1) 6.856 ms 4.753 ms 4.805 ms
 3 gwkccs.abdn.ac.uk (139.133.7.4) 5.002 ms 16.683 ms 5.202 ms
 4 aclarke-gw.abman.net.uk (194.81.60.94) 10.044 ms 14.902 ms 5.488 ms
 5 146.97.250.17 (146.97.250.17) 10.227 ms 9.398 ms 9.278 ms
 6 146.97.37.29 (146.97.37.29) 14.264 ms 19.135 ms 23.052 ms
 7 pos9-0.edin-scr.ja.net (146.97.35.61) 12.255 ms 20.273 ms 13.253 ms
 8 pos0-0.leed-scr.ja.net (146.97.33.26) 18.192 ms 18.343 ms 18.011 ms
 9 pos2-0.lond-scr.ja.net (146.97.33.30) 26.353 ms 24.332 ms 21.553 ms
10 146.97.35.2 (146.97.35.2) 23.363 ms 24.924 ms 21.483 ms
11 linx-gw.ja.net (128.86.1.249) 22.995 ms 21.206 ms 22.164 ms
12 r13-Gi4-0.Ldn-KQ4.UK.KPNQwest.net (195.66.224.54) 29.550 ms 28.995 ms 23.123 ms
13 r4-Gi1-0-0.200.ldn-KQ4.uk.kpnqwest.net (134.222.109.242) 21.956 ms 29.106 ms 25.063 ms
14 r1-Se1-3-3.ldn-KQ1.UK.KPNQwest.net (134.222.231.85) 26.493 ms 24.813 ms 30.160 ms
15 r2-Se0-1-0.0.ledn-KQ1.NL.kpnqwest.net (134.222.230.170) 30.916 ms 35.625 ms 34.892 ms
16 r1-PO4-0.obl-KQ1.NL.kpnqwest.net (134.222.96.34) 29.009 ms 29.055 ms 34.766 ms
17 r1-PO1-0.wdc.US.kpnqwest.net (134.222.228.34) 111.767 ms 111.815 ms 113.234 ms
18 wdc-brdr-03.inet.qwest.net (205.171.24.113) 102.676 ms 103.510 ms 102.513 ms
19 wdc-core-03.inet.qwest.net (205.171.24.69) 105.120 ms 102.578 ms 106.935 ms
20 atl-core-03.inet.qwest.net (205.171.5.243) 124.529 ms 119.954 ms 122.574 ms
21 atl-core-02.inet.qwest.net (205.171.21.157) 120.883 ms 124.904 ms 121.224 ms
22 atl-edge-03.inet.qwest.net (205.171.21.46) 123.278 ms 120.556 ms 121.136 ms
23 205.171.51.234 (205.171.51.234) 117.826 ms 123.912 ms 117.826 ms
24 * * *
25 64.224.0.100 (64.224.0.100) 128.347 ms 126.500 ms 126.081 ms
26 burbank.co.uk (209.35.163.129) 118.541 ms 125.294 ms 123.538 ms

University of Aberdeen, Electronics Research Group
Allan Bruce

35

Route can be seen as 18 hops in total over 9 domains

(7 intermediate)

Traceroute Hops Split Into Domains

194.247139.133

194.81

146.97

193.63

195.66

194.159

158.152

195.11

TEST MACHINE
Web browser

www.test.globalweb.co.uk
Web server

 1 milliways (139.133.204.64) 2.831 ms 2.077 ms 2.167 ms
 2 gw34.abdn.ac.uk (139.133.34.1) 4.828 ms 4.955 ms 4.865 ms
 3 gwkccs.abdn.ac.uk (139.133.7.4) 16.989 ms 15.510 ms 5.331 ms
 4 aclarke-gw.abman.net.uk (194.81.60.94) 7.769 ms 5.545 ms 5.734 ms
 5 146.97.250.17 (146.97.250.17) 9.785 ms 12.061 ms 9.347 ms
 6 146.97.37.29 (146.97.37.29) 13.904 ms 16.689 ms 11.144 ms
 7 pos9-0.edin-scr.ja.net (146.97.35.61) 11.492 ms 16.527 ms 21.450 ms
 8 pos0-0.leed-scr.ja.net (146.97.33.26) 18.450 ms 27.231 ms 19.766 ms
 9 pos2-0.lond-scr.ja.net (146.97.33.30) 32.023 ms 35.862 ms 28.696 ms
10 146.97.35.6 (146.97.35.6) 26.864 ms 25.046 ms 24.458 ms
11 linx-gw.ja.net (193.63.94.249) 23.115 ms 32.644 ms 21.848 ms
12 linx-2.router.demon.net (195.66.224.13) 26.371 ms 26.082 ms 22.430 ms
13 tele-backbone-1-ge020.router.demon.net (194.159.252.54) 24.510 ms 32.792 ms 23.929 ms
14 anchor-core-2-fxp1.router.demon.net (158.152.0.178) 36.384 ms 33.346 ms 36.909 ms
15 demon-gw-2.sol.co.uk (195.11.50.130) 37.791 ms 33.314 ms 38.483 ms
16 atm1-0-0-1.core2.scotland.net (194.247.77.34) 50.325 ms 56.771 ms 55.608 ms
17 fe12-0-0.core1.scotland.net (194.247.67.41) 44.368 ms 46.100 ms 41.028 ms
18 ABZ-Sci-Park.LL.scotland.net (194.247.71.109) 50.041 ms 51.625 ms 44.770 ms

University of Aberdeen, Electronics Research Group
Allan Bruce

36

Appendix A4:- FTP Example Transfer

University of Aberdeen, Electronics Research Group
Allan Bruce

37

Appendix A5:- Dummynet Topology

DOUGLAS
Captures packets
using snoop for
analysis of HTTP
header options

TO 204.x subnet

HUBDUMMYNET
Has 2 NICs and acts as bridge between network
and test machine. Uses IPFW rules to simulate
satellite performance. Also captures packets with
tcpdump for analysis

TEST
MACHINE
Used to
browse web
pages with
several
different web
browsers.

204.150

204.151 204.3

204.41

University of Aberdeen, Electronics Research Group
Allan Bruce

38

Appendix A6:- Dummynet Configuration

Pipe 1

Pipe 2

Pipe 2

Pipe 1
DUMMYNET

TEST MACHINE

WEB SERVER

These 4 pipes are configured to simulate satellite conditions. Typical
conditions are 544 Kbit/s bandwidth, 1200ms RTT, and 10-5 BER

Setup:
ipfw add pipe 1 pass ip from 139.133.204.150 to any
ipfw add pipe 2 pass ip from any to 139.133.204.150

Configuration:
ipfw pipe 1 config delay 500 ms bw 136Kbit/s plr 0.04
ipfw pipe 2 config delay 500 ms bw 136Kbit/s plr 0.04

		2002-08-06T21:16:07+0000
	Allan M Bruce

