
Evaluating Charge
Distribution Using

Approximate Methods

Allan Bruce

Department of Engineering

Allan Bruce Department of Engineering

Contents

Section Page Number

1. The Problem 1
2. Approximate Methods 1

2.1 Finite Difference Method 1
3. MATLAB 3
4. The Program 4
5. Problems 6
6. Observations and Results 7
7. Conclusion 9

List of figures

Figure 1: Charge Problem 1
Figure 2: 2D Heat Flow Problem 1
Figure 3: Program Block Diagram 4
Figure 4: Determining the Optimal Value of ω 7
Figure 5: Charge Distribution of 33x33 grid (isometric view) 8
Figure 6: Charge Distribution of 33x33 grid (plan view) 8

Allan Bruce Department of Engineering 1

1. The Problem

The problem given is to calculate the charge at several distinct points equally spaced
within a given system. The system is arranged as shown below in figure 1.

Figure 1: Charge Problem

There are four charged edges of a square with 1m gap between each opposite side. At
each corner there is a small insulating gap with a relative permitivity of 1. The
dielectric within the square also has a permitivity of 1. Each side has a charge as
labelled in figure 1. These edges satisfy the boundary conditions. It is desirable to
find the charge distribution within the system using approximate methods and a
programming language of our choice.

2. Approximate Methods

The method used to solve the problem was successive over relaxation. This method
structures the problem into a grid which is easily programmable using an array. The
method is a derivation of the Finite Difference Method as detailed below.

2.1 Finite Difference Method
Consider the 2D heat flow problem as shown in figure 2.

Figure 2: 2D Heat Flow Problem

x

y
1m

Small
insulating
gaps

0v
10v
20v

-10v
Potential Key:

x

y

Allan Bruce Department of Engineering 2

The temperature can be evaluated using the Laplace partial differential equation

0),(),(
2

2

2

2

=
∂

∂
+

∂
∂

x
yxT

x
yxT

If we now consider a first order Taylor series expansion of T in the positive direction
of x to form the forward difference

x
yxTyxxT

x
yxT

x
x
yxTyxTyxxT

∆
−∆+

=
∂

∂
∴

∆
∂

∂
+=∆+

),(),(),(

),(),(),(

Similarly expand in the negative direction of x to form the backward difference

x
yxxTyxT

x
yxT

∆
∆−−

=
∂

∂),(),(),(

Now consider a second order Taylor series expansion of T in both directions of x

)2.........(
2

)(),()(),(),(),(

)1(....................
2

),(),(),(),(

2

2

2

2

2

2

x
x
yxTx

x
yxTyxTyxxT

and

x
x
yxTx

x
yxTyxTyxxT

∆−
∂

∂
+∆−

∂
∂

+=∆−

∆
∂

∂
+∆

∂
∂

+=∆+

Now, subtracting these two equation gives the first order difference equation

x
yxxTyxxT

x
yxT

∆
∆−−∆+

=
∂

∂
2

),(),(),(

or more generally, the one dimensional first order difference equation

x
xxfxxfxf

∆
∆−−∆+

≈
2

)()()(' 00
0

Addition of equations (1) and (2) yields the second order difference equation. The
one dimensional second order difference equation is

2
000

0)(
)()(2)()(''

x
xxfxfxxfxf

∆
∆−+−∆+

≈

Allan Bruce Department of Engineering 3

This can now be extended into two dimensions as shown

20)(
)],(),(2),([)],(),(2),([)(''

x
yyxfyxfyyxfyxxfyxfyxxfxf

∆
∆−+−∆++∆−+−∆+

≈

If we now adapt this to be able to be applied to an array, then

),(yxxf ∆+ becomes),1(yxf + with)(hyx =∆=∆ defined. Since this is an
approximation, the process should be repeated until convergence is reached. This
now becomes an iterative step with the appropriate equations set up. This
approximation will be labelled the residual error and evaluated as

),(),(4)1,()1,(),1(),1(),(2 jighjijijijijijiR −−−+++−++= φφφφφ

Where g(i,j) is the charge distribution in a dielectric and defined by

0

)1(),(
ε

−−
=

yaxyxg

with a=1nCm-5, 0ε is the permitivity of free space (8.8542x10-12 Fm-1), x and y are the
distances in the respective directions. This residual error can now be used to update
the charge distribution matrix with a better approximation using

),(
4

),(),(1 jiRjiji kkk
ωφφ +=+

where ω is the relaxation factor. For ω =1 successive relaxation would be used. For
successive over relaxation, the relaxation factor must be 1<ω <2. This relaxation
factor depicts how quickly the system will converge. Optimal values of ω need to be
studied but the optimal value is believed to be the lower root of the equation

)3.......(..........0161622 =+− ωωt

where

+

=

yx NN
t ππ coscos

Nx and Ny are the number of intervals along the x and y axes respectively.
For this method to work, suitable initial interior conditions need to be set.

3. MATLAB

It was decided for this program to be written in MATLAB. MATLAB provides
powerful manipulation and ease of use for working with mathematical problems. It
was originally intended for rapid matrix manipulation, for example finding the
inverse, or eigenvalues. MATLAB has been enhanced to include many different
fields of mathematics and since has become a very powerful tool for engineers

Allan Bruce Department of Engineering 4

worldwide. MATLAB also allows relatively simple implementation of a graphical
user interface, or GUI, which results in programs written being easier to use.
The syntax of MATLAB is similar to that of the ANSI c programming language but
does not require specific libraries to be included nor such a rigorous use of end-of-
command semi-colons. The language will not be discussed in detail here but many
texts are available for understanding and using MATLAB.

4. The Program

As this is a fairly trivial program it is not necessary to follow a complete software
engineering process, however it was useful to construct a basic plan. Figure 3 shows
a basic block diagram of the programs execution.

Figure 3: Program Block Diagram

From this block diagram, some pseudo-code was easily obtained:

get user input
initialise variables

 while not converged
 evaluate next iteration
 if error < threshold then converged
 do
 output results

User input was required to allow the program to find a solution for a specified number
of points within the dielectric. From this, it was possible to initialise variables, Nx, Ny
and h. a and ε0 are constants so could also be initialised.
A double loop was set up to cover the range of i and j across the whole array as shown

Get user input
and initialise
variables

Evaluate φ k+1

Are we
sufficiently
converged?

Display
results

Yes No

Allan Bruce Department of Engineering 5

for i=1:intervals
 for j=1:intervals
 {

…
}

 end
 end

Iterations were carried out using the equations derived above. To verify convergence,
a variable was setup to obtain the sum of all values of the Residual Error array, R(i,j).
If the average error was detected to be below 10-5 then the system was thought to have
sufficiently converged. Once converged, the charge matrix, φ (i,j) and a graphical
output in the form of a 3D plot was displayed. As mentioned earlier, it is necessary to
choose suitable initial interior conditions, these were chosen as 5. The insulating gaps
needed an initial value as well, these were chosen as the midway value between each
charged side.
The whole program is shown below.

fprintf('\n\n\n\n\n\n\n\n\n\n\n\n\n');
points=input('Please enter number of points in the 1m gap '); % user input - amount of points
iterations=input('Please enter maximum number of iterations '); % user input - max iterations
Nx=points+1; Ny=Nx; h=1/Nx; %Set h and Nx
thi=zeros(points+2,points+2);R=thi; % Setup matrices with all zeros
thi(1,1)=5; thi(1,2:Nx)=20; thi(1,Nx+1)=15; thi(2:Ny,1)=-10; thi(Ny+1,1)=-5; thi(2:Ny,Nx+1)=10;
thi(Ny+1,Nx+1)=5; thi(Ny+1,2:Nx)=0; thi(2:Ny,2:Nx)=5;% Setup initial values of thi
thinew=thi; % Have thinew the same as thi initialised
a=10^-9; E=8.8542*10^-12; % Set constants
t=cos(pi/Nx) + cos(pi/Ny); % Evaluate t for matrix
temp=[t^2 -16 16]; ws=roots(temp); %Find the roots of equation to find values for w
fprintf('\nStats:\n')
fprintf('distance between points %f m\n',h)

if ws(1)>ws(2)
 w=ws(2);
else
 w=ws(1);
end

tic; % Measure time taken
for loop=1:iterations
 error=0; %Set error to 0 at beginning of each iteration
 for i=2:Nx
 for j=2:Ny
 x=(i-1)*h; %Find distance in x
 y=1-(j-1)*(h); %Find distance in y
 g(i,j)=-a*x*(y-1)/E; % Evaluate charge equation
 R(i,j) = thi(i+1,j) + thi(i-1,j) + thi(i,j+1) + thi(i,j-1) - 4*thi(i,j) - (h^2)*g(i,j); % Find Residual
 thinew(i,j)=thi(i,j) + (w/4)*R(i,j); % Ierative step to update thi with respect to residual
 error=error+abs(thinew(i,j) - thi(i,j)); %Evaluate an error for stopping if converged
 thi=thinew;
 end
 end

 if error<(10^-5)/points^2 % If small enough error then converged
 break % Therefore break the iterations
 end

end

Allan Bruce Department of Engineering 6

%Display results
timetaken=toc;
fprintf('After %d iterations and %f seconds, the final result is:',loop,timetaken)
thi(2:Nx,2:Ny)

%Plot data in 3D graph
x=linspace(0,1,Nx+1);
y=x;
[X,Y]=meshgrid(x,y);
surf(X,Y,thi);
xlabel('x (metres)')
ylabel('y (metres)')
zlabel('charge (coulombs)')
title('Charge distribution')

This program also asks the user for a maximum number of iterations as an upper limit.
This will safeguard against an infinite loop if the algorithm does not converge. The
program also measures the time taken to calculate the charge distribution and display
it.

5. Problems

Initially, the program did not converge. This was found to be due to several bugs.
The calculation of g(i,j) was wrong as ‘a’ was used instead of ‘-a’, 0ε was also
declared with the wrong value. With these corrections, the program then converged.
In the original problem, a sample set of actual charge values was supplied for a 3x3
grid system. The programs output was compared to this but found to have a relatively
large error. One reason for this error was the way the program was originally
executed. The program was evaluating the charges of areas rather than points which
were affecting the values of Nx, Ny and h. As a result ω was not optimal using the
supplied equation and extra iterations were required for convergence. With this
problem fixed, the program resulted in a lower error and ω was now believed to be
optimal. The error could still be improved so further examination of the program was
required. It was found that the reason for further error was in the declaration of y.
The Φ matrix was setup from +20v on the first row down to 0v on the bottom row,
and y was first defined to follow this direction. This led for g(i,j) to be miscalculated.
To fix the problem, it was required for y to be replaced with (1-y). The reason for this
was due to the 1m gap in the dielectric.

Allan Bruce Department of Engineering 7

6. Observations and Results

Values of ω were tested to find which gave the optimal result or least iterations to
achieve convergence. Figure 4 shows a graph of ω plotted against number of

Figure 4: Determining the Optimal Value of ω.

iterations for a 5x5 grid of charges within the dielectric. For ω=2, There was almost
no convergence therefore ω was taken as 1.999 for this result. Even at this value,
there were still a lot of iterations so to display this, a logarithmic scale was used to
display the number of iterations. It can be seen that the optimal value is around 1.333,
which is the value obtained by using equation (3).
The value of h was varied but this just gave erroneous results. This is due to the fact
that h is the distance between points and requires to be set to a unique value for each
grid.
Figures 5 & 6 show the charge distribution of a 33x33 grid (h=0.029412m). The time
taken for this to reach a solution was approximately 13.5 seconds.

Allan Bruce Department of Engineering 8

Figure 5: Charge Distribution of 33x33 grid (isometric view)

Figure 6: Charge Distribution of 33x33 grid (plan view)

Allan Bruce Department of Engineering 9

7. Conclusion

The example values for the 3x3 grid of charges given were derived from Fourier
analysis and believed to be exact to four significant figures. The program used
approximate methods in iterative steps to obtain a solution. It was found that the error
of these approximations was within 0.25% of the range of potential. This is accurate
enough for most calculations. Accuracy may be improved by extending the finite
difference method from a third order Taylor series expansion but this would require
further computational power and further algebraic manipulation.
The relaxation factor, ω, was varied and tested to evaluate the optimal value
compared with the value calculated from the given equation (3). This was found to be
very accurate. It was not possible to obtain an error for this as the test was to evaluate
how many iterations the program took to converge. For small grids, the program took
less than 100 iterations to complete. The number of iterations can only vary by a
whole number therefore the results would have an error greater than 1%. To test the
optimal value of ω would require a more accurate measurement than this.
Unfortunately, systems requiring over 100 iterations took a very long time to
complete. Because of this, it was not possible to check how accurate the optimal
value of ω was but this could be the basis of further study with extra time allowed.

		2002-08-06T21:29:00+0000
	Allan M Bruce

