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1. The Problem 
 
The problem given is to calculate the charge at several distinct points equally spaced 
within a given system.  The system is arranged as shown below in figure 1. 

 
Figure 1: Charge Problem 

 
There are four charged edges of a square with 1m gap between each opposite side.  At 
each corner there is a small insulating gap with a relative permitivity of 1.  The 
dielectric within the square also has a permitivity of 1.  Each side has a charge as 
labelled in figure 1.  These edges satisfy the boundary conditions.  It is desirable to 
find the charge distribution within the system using approximate methods and a 
programming language of our choice. 
 
 
 
2. Approximate Methods 
 
The method used to solve the problem was successive over relaxation.  This method 
structures the problem into a grid which is easily programmable using an array.  The 
method is a derivation of the Finite Difference Method as detailed below. 
 
2.1 Finite Difference Method 
Consider the 2D heat flow problem as shown in figure 2. 

 
Figure 2: 2D Heat Flow Problem 
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The temperature can be evaluated using the Laplace partial differential equation 
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If we now consider a first order Taylor series expansion of T in the positive direction 
of x to form the forward difference 
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Similarly expand in the negative direction of x to form the backward difference 
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Now consider a second order Taylor series expansion of T in both directions of x 
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Now, subtracting these two equation gives the first order difference equation 
 

x
yxxTyxxT

x
yxT

∆
∆−−∆+

=
∂

∂
2

),(),(),(  

 
or more generally, the one dimensional first order difference equation 
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Addition of equations (1) and (2) yields the second order difference equation.  The 
one dimensional second order difference equation is 
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This can now be extended into two dimensions as shown 
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If we now adapt this to be able to be applied to an array, then 

),( yxxf ∆+ becomes ),1( yxf +  with )( hyx =∆=∆ defined.  Since this is an 
approximation, the process should be repeated until convergence is reached.  This 
now becomes an iterative step with the appropriate equations set up.  This 
approximation will be labelled the residual error and evaluated as 
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Where g(i,j) is the charge distribution in a dielectric and defined by 
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with a=1nCm-5, 0ε is the permitivity of free space (8.8542x10-12 Fm-1), x and y are the 
distances in the respective directions.  This residual error can now be used to update 
the charge distribution matrix with a better approximation using 
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where ω  is the relaxation factor.  For ω =1 successive relaxation would be used.  For 
successive over relaxation, the relaxation factor must be 1<ω <2.  This relaxation 
factor depicts how quickly the system will converge.  Optimal values of ω  need to be 
studied but the optimal value is believed to be the lower root of the equation 
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Nx and Ny are the number of intervals along the x and y axes respectively.   
For this method to work, suitable initial interior conditions need to be set. 
 
 
 
3. MATLAB 
 
It was decided for this program to be written in MATLAB.  MATLAB provides 
powerful manipulation and ease of use for working with mathematical problems.  It 
was originally intended for rapid matrix manipulation, for example finding the 
inverse, or eigenvalues.  MATLAB has been enhanced to include many different 
fields of mathematics and since has become a very powerful tool for engineers 
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worldwide.  MATLAB also allows relatively simple implementation of a graphical 
user interface, or GUI, which results in programs written being easier to use. 
The syntax of MATLAB is similar to that of the ANSI c programming language but 
does not require specific libraries to be included nor such a rigorous use of end-of-
command semi-colons.  The language will not be discussed in detail here but many 
texts are available for understanding and using MATLAB. 
 
4. The Program 
 
As this is a fairly trivial program it is not necessary to follow a complete software 
engineering process, however it was useful to construct a basic plan.  Figure 3 shows 
a basic block diagram of the programs execution. 
 

 
Figure 3: Program Block Diagram 

 
From this block diagram, some pseudo-code was easily obtained: 
 

get user input 
initialise variables 

 while not converged 
  evaluate next iteration 
  if error < threshold then converged 
 do 
 output results 
 
User input was required to allow the program to find a solution for a specified number 
of points within the dielectric.  From this, it was possible to initialise variables, Nx, Ny 
and h.  a and ε0 are constants so could also be initialised. 
A double loop was set up to cover the range of i and j across the whole array as shown 
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for i=1:intervals 
  for j=1:intervals 
   { 

…  
} 

  end 
 end 
 
Iterations were carried out using the equations derived above.  To verify convergence, 
a variable was setup to obtain the sum of all values of the Residual Error array, R(i,j).  
If the average error was detected to be below 10-5 then the system was thought to have 
sufficiently converged.  Once converged, the charge matrix, φ (i,j) and a graphical 
output in the form of a 3D plot was displayed.  As mentioned earlier, it is necessary to 
choose suitable initial interior conditions, these were chosen as 5.  The insulating gaps 
needed an initial value as well, these were chosen as the midway value between each 
charged side. 
The whole program is shown below. 
 
fprintf('\n\n\n\n\n\n\n\n\n\n\n\n\n'); 
points=input('Please enter number of points in the 1m gap '); % user input - amount of points 
iterations=input('Please enter maximum number of iterations '); % user input - max iterations 
Nx=points+1; Ny=Nx; h=1/Nx; %Set h and Nx 
thi=zeros(points+2,points+2);R=thi; % Setup matrices with all zeros 
thi(1,1)=5; thi(1,2:Nx)=20; thi(1,Nx+1)=15; thi(2:Ny,1)=-10; thi(Ny+1,1)=-5; thi(2:Ny,Nx+1)=10; 
thi(Ny+1,Nx+1)=5; thi(Ny+1,2:Nx)=0; thi(2:Ny,2:Nx)=5;% Setup initial values of thi 
thinew=thi; % Have thinew the same as thi initialised 
a=10^-9; E=8.8542*10^-12; % Set constants 
t=cos(pi/Nx) + cos(pi/Ny); % Evaluate t for matrix 
temp=[t^2 -16 16]; ws=roots(temp); %Find the roots of equation to find values for w 
fprintf('\nStats:\n') 
fprintf('distance between points %f m\n',h) 
 
if ws(1)>ws(2) 
    w=ws(2); 
else 
    w=ws(1); 
end 
 
tic; % Measure time taken 
for loop=1:iterations 
    error=0; %Set error to 0 at beginning of each iteration 
    for i=2:Nx 
        for j=2:Ny 
            x=(i-1)*h; %Find distance in x 
            y=1-(j-1)*(h); %Find distance in y 
            g(i,j)=-a*x*(y-1)/E; % Evaluate charge equation 
            R(i,j) = thi(i+1,j) + thi(i-1,j) + thi(i,j+1) + thi(i,j-1) - 4*thi(i,j) - (h^2)*g(i,j); % Find Residual  
            thinew(i,j)=thi(i,j) + (w/4)*R(i,j); % Ierative step to update thi with respect to residual 
            error=error+abs( thinew(i,j) - thi(i,j) ); %Evaluate an error for stopping if converged 
            thi=thinew; 
        end 
    end 
     
    if error<(10^-5)/points^2 % If small enough error then converged 
        break % Therefore break the iterations 
    end 
     
end 
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%Display results 
timetaken=toc; 
fprintf('After %d iterations and %f seconds, the final result is:',loop,timetaken) 
thi(2:Nx,2:Ny) 
 
%Plot data in 3D graph 
x=linspace(0,1,Nx+1); 
y=x; 
[X,Y]=meshgrid(x,y); 
surf(X,Y,thi); 
xlabel('x (metres)') 
ylabel('y (metres)') 
zlabel('charge (coulombs)') 
title('Charge distribution') 
 
This program also asks the user for a maximum number of iterations as an upper limit.  
This will safeguard against an infinite loop if the algorithm does not converge.  The 
program also measures the time taken to calculate the charge distribution and display 
it. 
 
 
 
5. Problems 
 
Initially, the program did not converge.  This was found to be due to several bugs.  
The calculation of g(i,j) was wrong as ‘a’ was used instead of ‘-a’, 0ε was also 
declared with the wrong value.  With these corrections, the program then converged.  
In the original problem, a sample set of actual charge values was supplied for a 3x3 
grid system.  The programs output was compared to this but found to have a relatively 
large error.  One reason for this error was the way the program was originally 
executed.  The program was evaluating the charges of areas rather than points which 
were affecting the values of Nx, Ny and h.  As a result ω was not optimal using the 
supplied equation and extra iterations were required for convergence.  With this 
problem fixed, the program resulted in a lower error and ω was now believed to be 
optimal.  The error could still be improved so further examination of the program was 
required.  It was found that the reason for further error was in the declaration of y.  
The Φ matrix was setup from +20v on the first row down to 0v on the bottom row, 
and y was first defined to follow this direction.  This led for g(i,j) to be miscalculated.  
To fix the problem, it was required for y to be replaced with (1-y).  The reason for this 
was due to the 1m gap in the dielectric. 
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6. Observations and Results 
 
Values of ω were tested to find which gave the optimal result or least iterations to 
achieve  convergence.     Figure  4  shows  a  graph  of  ω  plotted  against  number  of  
 

 
Figure 4: Determining the Optimal Value of ω. 

 
iterations for a 5x5 grid of charges within the dielectric.  For ω=2, There was almost 
no convergence therefore ω was taken as 1.999 for this result.  Even at this value, 
there were still a lot of iterations so to display this, a logarithmic scale was used to 
display the number of iterations.  It can be seen that the optimal value is around 1.333, 
which is the value obtained by using equation (3). 
The value of h was varied but this just gave erroneous results.  This is due to the fact 
that h is the distance between points and requires to be set to a unique value for each 
grid. 
Figures 5 & 6 show the charge distribution of a 33x33 grid (h=0.029412m).  The time 
taken for this to reach a solution was approximately 13.5 seconds. 
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Figure 5: Charge Distribution of 33x33 grid (isometric view) 

 
 

 
Figure 6: Charge Distribution of 33x33 grid (plan view) 
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7. Conclusion 
 
The example values for the 3x3 grid of charges given were derived from Fourier 
analysis and believed to be exact to four significant figures.  The program used 
approximate methods in iterative steps to obtain a solution.  It was found that the error 
of these approximations was within 0.25% of the range of potential.  This is accurate 
enough for most calculations.  Accuracy may be improved by extending the finite 
difference method from a third order Taylor series expansion but this would require 
further computational power and further algebraic manipulation. 
The relaxation factor, ω, was varied and tested to evaluate the optimal value 
compared with the value calculated from the given equation (3).  This was found to be 
very accurate.  It was not possible to obtain an error for this as the test was to evaluate 
how many iterations the program took to converge.  For small grids, the program took 
less than 100 iterations to complete.  The number of iterations can only vary by a 
whole number therefore the results would have an error greater than 1%.  To test the 
optimal value of ω would require a more accurate measurement than this.  
Unfortunately, systems requiring over 100 iterations took a very long time to 
complete.  Because of this, it was not possible to check how accurate the optimal 
value of ω was but this could be the basis of further study with extra time allowed. 
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