

First Year Report:
Model-based Planning

Allan M. Bruce

Department of Computing Science, University of Aberdeen
July 19th 2004

Abstract

This report introduces a novel approach to the execution of qualitative
reasoning, by determining the stages that can be executed in parallel. The
development of such a reasoner is underway and is intended to be
incorporated into a distributed computing network known as the GRID.
Once this reasoner has been developed, it will provide the core reasoning
engine for a model-based planner. Model-based planners are particularly
suited to changing worlds as they do not require explicit knowledge of the
current state. A model-based planner can instead determine how to
achieve a goal from a state which had not been considered previously.

Allan Bruce Dept. of Computing Science

Table of Contents

1 Introduction .. 2

2 Qualitative Reasoning... 3

2.1 Existing Engines..3
2.1.1 QSIM..3
2.1.2 Fuzzy Reasoners ..4
2.1.3 FuSim...4
2.1.4 Morven...5

3 Morven Revisited ... 6

3.1 Novel Features ..6
3.1.1 Portability ..6
3.1.2 Parallelization ...6
3.1.3 Constraint Filter ..7
3.2 Future Work ...8

4 Planning .. 9

4.1 Graphplan ...10
4.2 Model-based Planning..12
4.2.1 Excalibur..12

5 Future Work.. 13

6 References .. 14

First Year Report: Model-Based Planning

1

Allan Bruce Dept. of Computing Science

1 Introduction
The field of qualitative reasoning is very interesting. It was developed using ideas

from Naïve physics and common-sense reasoning. QR has been the area of a lot of

research since, and a lot of interesting developments have come about. Some

reasoners incorporate fuzzy reasoning which allows a semi-quantitative approach and

makes temporal calculations easier. Until recently these reasoners have been

developed in languages such as LISP or Prolog, which limits their appeal to a limited

number of people. This has also restricted their modularity, particularly interfacing

with other programs and technologies. Developing a reasoner in Java allows this

interfacing, enhances portability and does not limit the target audience. One

technology which is still young in development, but very interesting lies in the field of

e-science, known as grid computing. These distributed computing networks allow

programs to run in parallel on different systems within the network, allowing the

performance of supercomputers to be met and available to a wider range of clients.

One of the main inspirations for developing a novel architecture for qualitative

reasoning is to develop a new model-based planner. Model-based planning has been

successful. Using a constraint-based qualitative reasoner is thought to make the

planner more applicable to a larger set of problems. The grid computing also allows

this planner to execute in a parallel manner which should increase the performance

greatly.

This report introduces the fields of QR and planning, and details the work completed

so far in developing a new architecture for Morven, a fuzzy qualitative reasoner.

First Year Report: Model-Based Planning

2

Allan Bruce Dept. of Computing Science

2 Qualitative Reasoning
Qualitative Reasoning is one area of many in Artificial Intelligence. The inspiration

behind QR is to reason in a manner similar to a human’s common sense. This allows

systems to be analysed with only incomplete knowledge or information that is not

very accurate. The basic idea of QR is to perform analysis with symbols, or ranges of

numbers rather than precise information. In its simplest form, QR labels 3 distinct

symbols, negative, zero and positive (-, 0, +). These can be used to determine a

variables state, but extra information is useful. Cellier[1] describes an example using

this method, but also giving information about the derivatives to aid in the analysis.

Morgan[2] found that extending the derivative information to include further

derivatives was also advantageous. These extra derivatives, known as Vector

Envisionment, were studied by Coghill[3], and it was found that more than three

levels (that is the 0th derivative, the 1st and 2nd derivatives) did not aid in describing

curves, as the naked eye cannot distinguish the extra derivative information.

2.1 Existing Engines

2.1.1 QSIM

QSIM is one of the most well used and highly developed QR engines[4]. QSIM was

as a constraint based qualitative simulation

engine. Models in QSIM are described by

qualitative differential equations. These

equations are an abstraction of differential

equations where the variables are qualitative.

This requires knowledge of the behaviour of

the system being modelled, if this is not known

then basic constraints can also be used, for

example monotonic functions, and algebraic

functions. Variable x is said to be

monotonically increasing with y if an increase

in y results in an increase in x throughout the

solution space.

originally developed by Kuipers[5]

Start

Initial State
Processing

Agenda = {} End

Generate All
Possible Values

Constraint Filter

Form-all-states

Global Filters

 QSIM Kernel

Pair-wise filter

Figure 1: QSIM Algorithm

First Year Report: Model-Based Planning

3

Allan Bruce Dept. of Computing Science

During execution, QSIM generates all possible values of variables, and uses a

constraint filter, and pair wise filtering[6] to discard inconsistent values, thus QSIM

utilizes a non-constructive algorithm. The core QSIM algorithm is shown in figure 1.

2.1.2 Fuzzy Reasoners

2.1.3 FuSim

Both Fuzzy Reasoning and Qualitative Reasoning allow problems to be analysed with

uncertainty. Shen & Leitch[7] decided to combine these two influences and created

FuSim. FuSim uses Fuzzy Numbers (instead of the quantity space mentioned above: -

, 0, +), which allows a system to have more information in the quantity space if

available resulting in a more accurate analysis. Fuzzy numbers are represented as 4-

tuples: a, b, α, β. The region between a and b is where the fuzzy number is 100%

true. α specifies the size of the region less than a that the fuzzy set is neither true nor

false, but has a degree of

truth. This degree is

linear from (a, 100%) to

(a- α, 0%) - Similarly for

the region from b to b+β.

Figure 2 shows a diagram

of a fuzzy-tuple.

α β Membership (%)

100

0
a b

It is possible to also set up

3 tuples to behave like a symbolic reasoner i.e.:

Figure 2: Fuzzy 4-tuple

1. have one tuple that covers the complete negative range, with (α,β) = 0

2. a tuple with (a,b,α,β) = 0

3. have one tuple that covers the complete positive range, with (α,β) = 0

FuSim had a few disadvantages, however. The temporal filters do not provide

additional filtering over the constraint and pair-wise filters. FuSim only uses the 0th

and 1st derivatives as in QSIM which is restrictive.

First Year Report: Model-Based Planning

4

Allan Bruce Dept. of Computing Science

2.1.4 Morven

Coghill[4] developed a qualitative reasoning framework using fuzzy numbers called

Morven. Morven combined the advantages of several existing technologies including

FuSim and Vector Envisionment. Being a framework, Morven could be used to

create envisionments or simulations in both synchronous and asynchronous modes.

Morven was found to be successful, but lacked portability being developed in LISP.

Morven is the main inspiration for the work detailed in this report.

First Year Report: Model-Based Planning

5

Allan Bruce Dept. of Computing Science

3 Morven Revisited
Following on from the LISP version of Morven, the new version is intended to be a

qualitative reasoning engine which uses fuzzy numbers fully to describe the quantity

space(s) and also in calculation of state generation & state transitions. Quantity

spaces are fully defined by the user, therefore as many fuzzy tuples can be specified

as required. Quantity spaces are also set at a per-derivative level, enabling the user to

specify more information if available. Morven uses differential planes which are

specified in the model, therefore allowing the user to specify how many derivatives to

calculate, similar to Vector Envisionment. Morven is a constraint-based qualitative

reasoner, which requires constraints to be specified as qualitative differential

equations, similar to QSIM. These are specified per differential plane.

3.1 Novel Features

3.1.1 Portability

Morven is being completely developed in Java, allowing it to be run across many

platforms easily. Object-oriented programming also allows Morven to be easily

updated in the future, and maintainable.

3.1.2 Parallelization

Platzner & Rinner first considered parallelization in QSIM[6]. They found that the

tuple filters in QSIM could be run independently of each other and therefore could be

run in parallel. They noticed almost an order of magnitude performance increase

when using 7 processors running in parallel.

This inspired an idea to increase the amount of parallel calculations within a

qualitative reasoner. Morven also executes the transition analysis and state generation

phases in parallel, and is scaleable to run on very large systems.

Platzner and Rinner used a dedicated hardware architecture which constricts the

implementation. Morven, instead, uses an abstract architecture that can run on almost

any system. Figure 3 shows a diagram of the basic architecture used in Morven.

First Year Report: Model-Based Planning

6

Allan Bruce Dept. of Computing Science

Core System:

3.1.3 Constraint Filter

QSIM and many other qualitative reasoners adopt an approach similar to Davis[8] for

the constraint filter, which utilises a nested loop. The outer loop continues until no

changes in the constraints

are seen. The inner loop

iterates through all the

constraints and checks for

inconsistencies.

Morven just requires one

pass for the constraint

filter, and this loop can be

run in a parallel manner.

First, all the possible

states are generated using transition rules, then each state is considered in turn and

checked for inconsistencies. If a state is found to be inconsistent, it is immediately

discarded. See figure 4 for a comparison of the two approaches. In addition to the

Figure 3: Morven Architecture
Morven spawns processes on remote machines if connected to the GRID, otherwise threads are

created on the local machine. Each child process/thread contains its own transition rules,
constraint filter and quantity space repository depending on the required type of process.

Parses model, distributes and
synchronises connected systems

Parse Model

Envisionment:
Generates all

possible states

Synchroniser:
Spawns an synchronises
local/remote processes

.

.

.

Child
process/thread

Child
process/thread

Child
process/thread

Transition
Rules / State
Generation

Constraint
Filter

State
Repository

Results
viewer

Loop until
no changes

Check
constraint

consistency

Loop through
all

constraints

Generate all
possible

states

Loop through
all states

Check state
consistency

(a) (b)

Figure 4: Constraint Filters
(a) Davis approach uses a nested loop whereas (b) Morven

uses a single loop to filter the constraints.

First Year Report: Model-Based Planning

7

Allan Bruce Dept. of Computing Science

constraint filter, the user can also specify the range a variable may take, thus allowing

extra states to be trimmed (e.g. a negative Volume is impossible, and therefore any

states that may have this may be discarded immediately).

3.2 Future Work

To take advantage of the parallelization of Morven, it is the intention to utilise a

distributed computing network called the GRID. The Globus Toolkit allows easy use

of the network which allows programs to run in parallel on different machines

worldwide. This should allow Morven to run far faster than any other qualitative

reasoner around today. It will be interesting to see the speed comparisons between

running Morven on a single processor machine, a multi-processor machine and on

several machines world-wide using the GRID.

Morven is also intended to be the core reasoner for a model-based planner. The next

section discusses the field of planning and the inspirations for developing a model-

based planner.

First Year Report: Model-Based Planning

8

Allan Bruce Dept. of Computing Science

4 Planning
Using Morven as the core qualitative reasoner, a model-based planner is intended to

be developed. Below is a brief description of planning, and in particular model-based

planning.

Planning is another field of Artificial Intelligence, however unlike qualitative

reasoning, planning is a mature area of study and research still continues into better

planning theory. The aim of a planner is to construct a plan to solve a given problem

from a set of actions and their consequences. For example, if a planner was given the

problem to buy milk and walk the dog, and it had (amongst many others) the actions

GoToShop, PurchaseMilk, then it should be able to construct the sub-plan to

GoToShop and then PurchaseMilk. Plans are rarely this simple, they often contain

many solutions for a single sub-problem, and some sub-problems may be executable

independently of one another, allowing parallelization.

Planners have similarities with problem solvers, but differ in the representation of

actions, states and goals[13]. (Russell and Norvig[13] continues to give a detailed

example of how these differ - the reader is directed to §11.2 of the reference).

In the buying milk example, a planner knows that the goal state includes Have(Milk)

and the planner should have include in the knowledge, that Buy(x) results in Have(x),

therefore the planner would reason that it requires to Buy(Milk) without considering

any other unnecessary actions.

The planner may also add these actions anywhere in the plan where needed unlike a

problem solver which adds them as a sequence of actions from the initial state. This

means that a planner would know that to be able to Buy(x) it would have to be

At(Supermarket). Any state that included At (Supermarket) could be used regardless

of whether the planner already has other sub-goals achieved. A problem solver would

have to consider the state containing At(Supermarket) with all other sub-goals to be

able to know to Buy(Milk). This reduces the branching factor considerably of the

planner’s search space considerably.

A planner regards most parts of the world independent, and can therefore split the

large problem into sub-problems (known as divide-and-conquer). The buying milk

example would be split into two sub-goals:

First Year Report: Model-Based Planning

9

Allan Bruce Dept. of Computing Science

1. Buy some milk

2. Walk the dog

Problem solvers would have to consider a course of action that solved both of these

conditions in one problem space hence increasing the search space.

Most planners also include some mechanism of execution monitoring, which allows

the planner to know when a stage of the plan has failed or the world has changed and

it requires re-planning.

Planners are free to come to their solutions in any way as long as they produce a

solution to the planning problem. One way of arriving at the solution is to use

regression from the goal state. From the goal state, the planner should only add steps

that achieve a precondition which is not yet met. If one of these steps may be

breached then the planner protects them to safeguard against another step interfering

and deleting the precondition. All causal links are automatically protected as they

satisfy the requirement for protection. If any of the protected links are threatened by

other steps then an ordering constrained is used to ensure that the preconditions are

not breached. This ordering may be a promotion or demotion[14] depending if the

threatening step is placed after or before the protected link respectively. If the planner

is unable to achieve promotion or demotion of such steps then it should try a different

choice at some earlier point.

4.1 Graphplan

Amongst the planners available, Graphplan[12] is possibly the most successful

planner, and has been the basis of many research activities[9-11]. The main idea for

Graphplan developed from graph theory. Graphplan constructs a compact planning

graph (a directed levelled graph) based on domain information, goals and initial

conditions of a given problem. There are three types of edges and two types of nodes

in the planning graph. These are:

Nodes:

• Proposition nodes

First Year Report: Model-Based Planning

10

Allan Bruce Dept. of Computing Science

• Action nodes

Edges

• Precondition-edges

• Add-edges

• Delete-edges

Each level of the planning graph is split into two stages, the pre-condition stage and

the action stage, each with the corresponding type of node. These nodes are

connected by either of the edges. Each action node is connected to its pre-condition

with a precondition-edge. Each action may have add-effects, therefore will be

connected to the next level with an add-edge and similarly for delete-effects and

delete-edges. Figure 5 shows a simple example of a planning graph for the rocket

domain[12].

Graphplan uses the planning graph to guide its search to obtain a partial-order plan.

Graphplan can also determine sections of the planning graph that are mutually

exclusive of each other, allowing the search to be further reduced, hence increasing

efficiency.

At(A,Start)

At(B,Start)

At(R,Start)

Fuel(R)

Load(A,Start)

Load(B,Start)

Move(Start,Dest)

At(A,Start)

At(B,Start)

At(R,Start)

Fuel(R)

In(A,R)

In(B,R)

At(R,Dest)

Propositions
Time t=1

Actions
Time t=1

Propositions
Time t=2

In(A,R)

In(B,R)

At(R,Dest)

Load(A,Start)

Load(B,Start)

Move(Start,Dest)

At(A,Start)

At(B,Start)

At(R,Start)

Fuel(R)

Unload(A,Dest)

Unload(B,Dest)

At(A,Dest)

At(B,Dest)

Actions Goals Propositions Actions
Time t=3 Time t=3 Time t=2

Figure 5: Planning Graph of the rocket domain
A domain that has 4 objects: a rocket (R), some fuel and two pieces of cargo (A and B). Actions in the
domain include Load, Unload, Fuel, and Move. Delete-edges are represented by a dashed line and no-
operations by a line with a dot.

First Year Report: Model-Based Planning

11

Allan Bruce Dept. of Computing Science

4.2 Model-based Planning

Traditional planners use execution monitoring to determine if the world has changed

or any stage of the plan has failed. Re-planning is then required to achieve the goal.

Traditional planners also rely that the problem space is static[15], i.e. worlds that do

not change without the planner’s knowledge. This results in most planners being

unsuitable for real worlds, and especially in the world of robotics. Model-based

planners do not rely on static worlds and can instead reason about their actions and

the consequences. This is particularly useful in changing environments. Model-based

planners do not require explicit information of actions, as they use the internal model

to evaluate the results of such actions, e.g. an action may be to boil water. A

traditional planner would set water on the heat for a set pre-calculated time. Instead,

a model-based planner reasons about the process of heating water, and can determine

how long to boil for, and also more importantly determine if the heat is enough to

make the water boil.

Another example: Suggest that a cooling plant requires a valve to be adjusted to allow

a certain flow of water through a cooling pipe. A traditional planner would have to

have pre-planned all possible contingencies in case they occur, whereas a model-

based planner can reason that if the cooling isn’t sufficient then opening the valve

further is required, or if there is too much cooling then closing the valve would solve

the problem. In fact, with a qualitative reasoning engine within the model-based

planner it could determine that if a little more cooling is required, then the valve

requires to be opened a little more. This is the motivation of the main work for the

authors PhD.

4.2.1 Excalibur

Model-based planners already exist, the most notable being Drabble’s Excalibur[15].

Excalibur uses Forbus’ Qualitative Process Theory[16] to model the internal

representation of the world. This system reasons about processes in a manner similar

to the boiling water example above.

Excalibur has the same stages as a normal planner but also includes a plan reasoner

and simulation of the world which predicts the state of the real world after the action

of the planner has been executed. These are linked by a plan co-ordinator which

First Year Report: Model-Based Planning

12

Allan Bruce Dept. of Computing Science

passes action queries from the planner to the plan reasoner and replanning requests

from the plan reasoner to the planner if the action is unsuitable.

Excalibur has been used mainly in robotics and autonomous spacecraft control, but

has also been used as an online tutor and assistant in the classroom. Excalibur uses a

model based on the process ontology. Using the constraint ontology allows a wider

set of problems to be modelled.

5 Future Work
As mentioned in §2.2, the fuzzy qualitative reasoner Morven has been successfully

developed to include parallelization in several stages. It is proposed to incorporate

these ideas into a distributed computing network known as the GRID. With this

complete, this will introduce a novel approach to qualitative reasoners.

One use of this new qualitative reasoner is to develop a model-based planner using

Morven as the core reasoner.

Existing model-based planners are based on old planners and Excalibur used a

reasoner based on Qualitative Process Theory. It is believed that a planner based on

Graphplan and using the fuzzy qualitative reasoner Morven would introduce a novel

and exciting model-based planner to the planning community.

First Year Report: Model-Based Planning

13

Allan Bruce Dept. of Computing Science

6 References

[1] Cellier F., Continuous System Modelling, Springer-Verlag 1991.

[2] Morgan A., The Qualitative Behaviour of Dynamical Physical Systems, PhD

Thesis, University of Cambridge, November 1988.

[3] Coghill G., Vector Envisionment of Compartmental Systems, M.Sc. Thesis,

University of Glasgow, April 1992.

[4] Coghill G., Mycroft: A Framework for Constraint Based Fuzzy Qualitative

Reasoning, PhD Thesis, Heriot-Watt University, September 1996.

[5] Kuipers, B., “Qualitative Simulation”, Artificial Intelligence, 29(3), 289-338,

September 1986.

[6] Platzner M. & Rinner B., “Toward Embedded Qualitative Simulation: A

Specialized Computer Architecture for QSIM”, IEEE Intelligent Systems,

15(2), 62-68, March/April 2000.

[7] Shen Q. & Leitch R., “Fuzzy Qualitative Simulation”, IEEE Transactions on

Systems, Man and Cybernetics, 23(4), 1038-1061, July-August 1993.

[8] Davis E., “Constraint Propagation with Interval Labels”, Artificial

Intelligence, 32(3), 281-331, July 1987.

[9] Smith D. & Weld D., “Temporal Planning with Mutual Exclusion Reasoning”,

Proceedings of the 16th International Conference on AI, 1999.

[10] Krogt R. et al, “Exploiting Opportunities Using Planning Graphs”,

Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special

Interest Group, December 2003.

First Year Report: Model-Based Planning

14

Allan Bruce Dept. of Computing Science

[11] D. Weld, et al., “Extending Graphplan to Handle Uncertainty and Sensing

Actions”, Proceedings of the Fifteenth National Conference on Artificial

Intelligence, July 1998.

[12] Blum A. & Merrick F., “Fast Planning Through Planning Graph Analysis”,

Artificial Intelligence, 90, 281-300, 1997.

[13] Russell S. & Norvig P., Artificial Intelligence: A Modern Approach, Prentice

Hall, 1st Edition – 1995.

[14] Kleer J. de & Williams B., “Diagnosing Multiple Faults”, Artificial

Intelligence, 32(1), 91-130, April 1987.

[15] Drabble B., “Excalibur: A Program for Planning and Reasoning with

Processes”, Artificial Intelligence, 62(1), 1-40, July 1993.

[16] Forbus K., “Qualitative Process Theory”, Artificial Intelligence, 24, 85-168,

December 1984.

First Year Report: Model-Based Planning

15

	1stYearReport.pdf
	1stYearReport.pdf
	Introduction
	Qualitative Reasoning
	Existing Engines
	QSIM
	Fuzzy Reasoners
	FuSim
	Morven

	Morven Revisited
	Novel Features
	Portability
	Parallelization
	Constraint Filter

	Future Work

	Planning
	Graphplan
	Model-based Planning
	Excalibur

	Future Work
	References

